A mononuclidic element or monotopic element [1] is one of the 21 chemical elements that is found naturally on Earth essentially as a single nuclide (which may, or may not, be a stable nuclide). This single nuclide will have a characteristic atomic mass. Thus, the element's natural isotopic abundance is dominated by one isotope that is either stable or very long-lived. There are 19 elements in the first category (which are both monoisotopic and mononuclidic), and 2 (bismuth [lower-alpha 1] and protactinium) in the second category (mononuclidic but not monoisotopic, since they have zero, not one, stable nuclides). A list of the 21 mononuclidic elements is given at the end of this article.
Of the 26 monoisotopic elements that, by definition, have only one stable isotope, seven are not considered mononuclidic, due to the presence of a significant fraction of a very long-lived (primordial) radioisotope. These elements are vanadium, rubidium, indium, lanthanum, europium, lutetium, and rhenium.
Many units of measurement were historically, or are still, defined with reference to the properties of specific substances that, in many cases, occurred in nature as mixes of multiple isotopes, for example:
Unit | Dimension | Reference substance | Relevant property | Number of common isotopes | Current (2022) status |
---|---|---|---|---|---|
Second | Time | Caesium | Hyperfine transition frequency | 1 | Still in use and one of the 7 SI base units [2] |
Metre | Length | Krypton | Transition wavelength | 6 | Redefined in 1983 [3] |
Multiple | Temperature | Water | Melting point, boiling point, and triple point | 2 of hydrogen and 3 of oxygen | Redefined in 2019 [4] or defunct |
Calorie and British thermal unit | Energy | Water | Specific heat capacity | 2 of hydrogen and 3 of oxygen | Calorie redefined in terms of the joule, BTU still in use. [5] Neither unit is part of, or recommended for use in, the SI |
Mole | Amount of substance | Carbon | Atomic mass | 3 | Redefined in 2019 [6] |
Dalton | Mass | Carbon | Atomic mass | 3 | Still in use and accepted for use in (but not part of) the SI [7] |
Candela | Luminous intensity | Platinum | Luminance at melting point | 6 | Redefined in 1979 [8] |
Millimetre of mercury | Pressure | Mercury | Density | 7 | Redefined in terms of the pascal, not part of, or recommended for use in, the SI |
Since samples taken from different natural sources can have subtly different isotopic ratios, the relevant properties can differ between samples. If the definition simply refers to a substance without addressing the isotopic composition, this can lead to some level of ambiguity in the definition and variation in practical realizations of the unit by different laboratories, as was observed with the kelvin before 2007. [9] If the definition refers only to one isotope (as that of the dalton does) or to a specific isotope ratio, e.g. Vienna Standard Mean Ocean Water, this removes a source of ambiguity and variation, but adds layers of technical difficulty (preparing samples of a desired isotopic ratio) and uncertainty (regarding how much an actual reference sample differs from the nominal ratio). The use of mononuclidic elements as reference material sidesteps these issues and notably the only substance referenced in the most recent iteration of the SI is caesium, a mononuclidic element.
Mononuclidic elements are also of scientific importance because their atomic weights can be measured to high accuracy, since there is minimal uncertainty associated with the isotopic abundances present in a given sample. Another way of stating this, is that, for these elements, the standard atomic weight and atomic mass are the same. [10]
In practice, only 11 of the mononuclidic elements are used in standard atomic weight metrology. These are aluminium, bismuth, caesium, cobalt, gold, manganese, phosphorus, scandium, sodium, terbium, and thorium. [11]
In nuclear magnetic resonance spectroscopy (NMR), the three most sensitive stable nuclei are hydrogen-1 (1H), fluorine-19 (19F) and phosphorus-31 (31P). Fluorine and phosphorus are monoisotopic, with hydrogen nearly so. 1H NMR, 19F NMR and 31P NMR allow for identification and study of compounds containing these elements.
Trace concentrations of unstable isotopes of some mononuclidic elements are found in natural samples. For example, beryllium-10 (10Be), with a half-life of 1.4 million years, is produced by cosmic rays in the Earth's upper atmosphere; iodine-129 (129I), with a half-life of 15.7 million years, is produced by various cosmogenic and nuclear mechanisms; caesium-137 (137Cs), with a half-life of 30 years, is generated by nuclear fission. Such isotopes are used in a variety of analytical and forensic applications.
Isotopic mass data from Atomic Weights and Isotopic Compositions ed. J. S. Coursey, D. J. Schwab and R. A. Dragoset, National Institute of Standards and Technology (2005).
Element | Most stable nuclide | Z (p) | N (n) | Isotopic mass (Da) | Half-life | Second most stable nuclide | N (n) | Half-life |
---|---|---|---|---|---|---|---|---|
beryllium | 9Be | 4 | 5 | 9.012 182(3) | Stable | 10Be | 6 | 1.387(12)×106 y |
fluorine | 19F | 9 | 10 | 18.998 403 2(5) | Stable | 18F | 9 | 109.739(9) min |
sodium | 23Na | 11 | 12 | 22.989 770(2) | Stable | 22Na | 11 | 2.6018(22) y |
aluminium | 27Al | 13 | 14 | 26.981 538(2) | Stable | 26Al | 13 | 7.17(24)×105 y |
phosphorus | 31P | 15 | 16 | 30.973 761(2) | Stable | 33P | 18 | 25.35(11) d |
scandium | 45Sc | 21 | 24 | 44.955 910(8) | Stable | 46Sc | 25 | 83.79(4) d |
manganese | 55Mn | 25 | 30 | 54.938 049(9) | Stable | 53Mn | 28 | 3.7(4)×106 y |
cobalt | 59Co | 27 | 32 | 58.933 200(9) | Stable | 60Co | 33 | 5.2713(8) y |
arsenic | 75As | 33 | 42 | 74.921 60(2) | Stable | 73As | 40 | 80.30(6) d |
yttrium | 89Y | 39 | 50 | 88.905 85(2) | Stable | 88Y | 49 | 106.616(13) d |
niobium | 93Nb | 41 | 52 | 92.906 38(2) | Stable | 92Nb | 51 | 3.47(24)×107 y |
rhodium | 103Rh | 45 | 58 | 102.905 50(2) | Stable | 102mRh | 57 | 3.742(10) y |
iodine | 127I | 53 | 74 | 126.904 47(3) | Stable | 129I | 76 | 1.57(4)×107 y |
caesium | 133Cs | 55 | 78 | 132.905 45(2) | Stable | 135Cs | 80 | 2.3×106 y |
praseodymium | 141Pr | 59 | 82 | 140.907 65(2) | Stable | 143Pr | 84 | 13.57(2) d |
terbium | 159Tb | 65 | 94 | 158.925 34(2) | Stable | 158Tb | 93 | 180(11) y |
holmium | 165Ho | 67 | 98 | 164.930 32(2) | Observationally stable | 163Ho | 97 | 4570(25) y |
thulium | 169Tm | 69 | 100 | 168.934 21(2) | Observationally stable | 171Tm | 102 | 1.92(1) y |
gold | 197Au | 79 | 118 | 196.966 55(2) | Observationally stable | 195Au | 116 | 186.098(47) d |
bismuth | 209Bi | 83 | 126 | 208.980 38(2) | 2.01(8)×1019 y | 210mBi | 127 | 3.04(6)×106 y |
protactinium | 231Pa | 91 | 140 | 231.035 88(2) | 3.276(11)×104 y | 233Pa | 142 | 26.975(13) d |
A chemical element is a chemical substance that cannot be broken down into other substances by chemical reactions. The basic particle that constitutes a chemical element is the atom. Elements are identified by the number of protons in their nucleus, known as the element's atomic number. For example, oxygen has an atomic number of 8, meaning each oxygen atom has 8 protons in its nucleus. Atoms of the same element can have different numbers of neutrons in their nuclei, known as isotopes of the element. Two or more atoms can combine to form molecules. Chemical compounds are molecules made of atoms of different elements, while mixtures contain atoms of different elements not necessarily combined as molecules. Atoms can be transformed into different elements in nuclear reactions, which change an atom's atomic number.
The molecular mass (m) is the mass of a given molecule. The unit dalton (Da) is often used. Different molecules of the same compound may have different molecular masses because they contain different isotopes of an element. The derived quantity relative molecular mass is the unitless ratio of the mass of a molecule to the atomic mass constant (which is equal to one dalton).
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are energetic enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nuclide the decay rate, and thus the half-life (t1/2) for that collection, can be calculated from their measured decay constants. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.
Stable nuclides are nuclides that are not radioactive and so do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes.
A nuclide is a class of atoms characterized by their number of protons, Z, their number of neutrons, N, and their nuclear energy state.
In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". The typical radioisotope does not decay directly to a stable state, but rather it decays to another radioisotope. Thus there is usually a series of decays until the atom has become a stable isotope, meaning that the nucleus of the atom has reached a stable state.
Relative atomic mass, also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass constant. The atomic mass constant is defined as being 1/12 of the mass of a carbon-12 atom. Since both quantities in the ratio are masses, the resulting value is dimensionless. These definitions remain valid even after the 2019 redefinition of the SI base units.
Fluorine (9F) has 19 known isotopes ranging from 13
F
to 31
F
and two isomers. Only fluorine-19 is stable and naturally occurring in more than trace quantities; therefore, fluorine is a monoisotopic and mononuclidic element.
Protactinium (91Pa) has no stable isotopes. The four naturally occurring isotopes allow a standard atomic weight to be given.
The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). Its standard atomic weight is 87.62(1).
Although phosphorus (15P) has 22 isotopes from 26P to 47P, only 31P is stable; as such, phosphorus is considered a monoisotopic element. The longest-lived radioactive isotopes are 33P with a half-life of 25.34 days and 32P with a half-life of 14.268 days. All others have half-lives of under 2.5 minutes, most under a second. The least stable known isotope is 47P, with a half-life of 2 milliseconds.
Beryllium (4Be) has 11 known isotopes and 3 known isomers, but only one of these isotopes is stable and a primordial nuclide. As such, beryllium is considered a monoisotopic element. It is also a mononuclidic element, because its other isotopes have such short half-lives that none are primordial and their abundance is very low. Beryllium is unique as being the only monoisotopic element with both an even number of protons and an odd number of neutrons. There are 25 other monoisotopic elements but all have odd atomic numbers, and even numbers of neutrons.
The standard atomic weight of a chemical element (symbol Ar°(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, isotope 63Cu (Ar = 62.929) constitutes 69% of the copper on Earth, the rest being 65Cu (Ar = 64.927), so
Isotopes are distinct nuclear species of the same chemical element. They have the same atomic number and position in the periodic table, but differ in nucleon numbers due to different numbers of neutrons in their nuclei. While all isotopes of a given element have similar chemical properties, they have different atomic masses and physical properties.
The atomic mass (ma or m) is the mass of an atom. Although the SI unit of mass is the kilogram (symbol: kg), atomic mass is often expressed in the non-SI unit dalton (symbol: Da) – equivalently, unified atomic mass unit (u). 1 Da is defined as 1⁄12 of the mass of a free carbon-12 atom at rest in its ground state. The protons and neutrons of the nucleus account for nearly all of the total mass of atoms, with the electrons and nuclear binding energy making minor contributions. Thus, the numeric value of the atomic mass when expressed in daltons has nearly the same value as the mass number. Conversion between mass in kilograms and mass in daltons can be done using the atomic mass constant .
Phosphorus-31 NMR spectroscopy is an analytical chemistry technique that uses nuclear magnetic resonance (NMR) to study chemical compounds that contain phosphorus. Phosphorus is commonly found in organic compounds and coordination complexes, making it useful to measure 31- NMR spectra routinely. Solution 31P-NMR is one of the more routine NMR techniques because 31P has an isotopic abundance of 100% and a relatively high gyromagnetic ratio. The 31P nucleus also has a spin of 1/2, making spectra relatively easy to interpret. The only other highly sensitive NMR-active nuclei spin 1/2 that are monoisotopic are 1H and 19F.
Fluorine-19 nuclear magnetic resonance spectroscopy is an analytical technique used to detect and identify fluorine-containing compounds. 19F is an important nucleus for NMR spectroscopy because of its receptivity and large chemical shift dispersion, which is greater than that for proton nuclear magnetic resonance spectroscopy.
A monoisotopic element is an element which has only a single stable isotope (nuclide). There are 26 such elements, as listed.
In nuclear physics, properties of a nucleus depend on evenness or oddness of its atomic number Z, neutron number N and, consequently, of their sum, the mass number A. Most importantly, oddness of both Z and N tends to lower the nuclear binding energy, making odd nuclei generally less stable. This effect is not only experimentally observed, but is included in the semi-empirical mass formula and explained by some other nuclear models, such as the nuclear shell model. This difference of nuclear binding energy between neighbouring nuclei, especially of odd-A isobars, has important consequences for beta decay.