Holmium | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /ˈhoʊlmiəm/ | ||||||||||||||||||||||||||||||||||||||||||
Appearance | silvery white | ||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Ho) | |||||||||||||||||||||||||||||||||||||||||||
Holmium in the periodic table | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Atomic number (Z) | 67 | ||||||||||||||||||||||||||||||||||||||||||
Group | f-block groups (no number) | ||||||||||||||||||||||||||||||||||||||||||
Period | period 6 | ||||||||||||||||||||||||||||||||||||||||||
Block | f-block | ||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [ Xe ] 4f11 6s2 | ||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 29, 8, 2 | ||||||||||||||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||||||||||||||
Phase at STP | solid | ||||||||||||||||||||||||||||||||||||||||||
Melting point | 1734 K (1461 °C,2662 °F) | ||||||||||||||||||||||||||||||||||||||||||
Boiling point | 2873 K(2600 °C,4712 °F) | ||||||||||||||||||||||||||||||||||||||||||
Density (at 20° C) | 8.795 g/cm3 [3] | ||||||||||||||||||||||||||||||||||||||||||
when liquid (at m.p.) | 8.34 g/cm3 | ||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 17.0 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 251 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
Molar heat capacity | 27.15 J/(mol·K) | ||||||||||||||||||||||||||||||||||||||||||
Vapor pressure
| |||||||||||||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||||||||||||
Oxidation states | 0, [4] +1, +2, +3 (a basic oxide) | ||||||||||||||||||||||||||||||||||||||||||
Electronegativity | Pauling scale: 1.23 | ||||||||||||||||||||||||||||||||||||||||||
Ionization energies |
| ||||||||||||||||||||||||||||||||||||||||||
Atomic radius | empirical:176 pm | ||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 192±7 pm | ||||||||||||||||||||||||||||||||||||||||||
Spectral lines of holmium | |||||||||||||||||||||||||||||||||||||||||||
Other properties | |||||||||||||||||||||||||||||||||||||||||||
Natural occurrence | primordial | ||||||||||||||||||||||||||||||||||||||||||
Crystal structure | hexagonal close-packed (hcp)(hP2) | ||||||||||||||||||||||||||||||||||||||||||
Lattice constants | a = 357.80 pm c = 561.77 pm (at 20 °C) [3] | ||||||||||||||||||||||||||||||||||||||||||
Thermal expansion | poly: 11.2 µm/(m⋅K)(at r.t.) | ||||||||||||||||||||||||||||||||||||||||||
Thermal conductivity | 16.2 W/(m⋅K) | ||||||||||||||||||||||||||||||||||||||||||
Electrical resistivity | poly: 814 nΩ⋅m(at r.t.) | ||||||||||||||||||||||||||||||||||||||||||
Magnetic ordering | paramagnetic | ||||||||||||||||||||||||||||||||||||||||||
Young's modulus | 64.8 GPa | ||||||||||||||||||||||||||||||||||||||||||
Shear modulus | 26.3 GPa | ||||||||||||||||||||||||||||||||||||||||||
Bulk modulus | 40.2 GPa | ||||||||||||||||||||||||||||||||||||||||||
Speed of sound thin rod | 2760 m/s(at 20 °C) | ||||||||||||||||||||||||||||||||||||||||||
Poisson ratio | 0.231 | ||||||||||||||||||||||||||||||||||||||||||
Vickers hardness | 410–600 MPa | ||||||||||||||||||||||||||||||||||||||||||
Brinell hardness | 500–1250 MPa | ||||||||||||||||||||||||||||||||||||||||||
CAS Number | 7440-60-0 | ||||||||||||||||||||||||||||||||||||||||||
History | |||||||||||||||||||||||||||||||||||||||||||
Discovery | Per Theodor Cleve, Jacques-Louis Soret and Marc Delafontaine (1878) | ||||||||||||||||||||||||||||||||||||||||||
Isotopes of holmium | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Holmium is a chemical element; it has symbol Ho and atomic number 67. It is a rare-earth element and the eleventh member of the lanthanide series. It is a relatively soft, silvery, fairly corrosion-resistant and malleable metal. Like many other lanthanides, holmium is too reactive to be found in native form, as pure holmium slowly forms a yellowish oxide coating when exposed to air. When isolated, holmium is relatively stable in dry air at room temperature. However, it reacts with water and corrodes readily, and also burns in air when heated.
In nature, holmium occurs together with the other rare-earth metals (like thulium). It is a relatively rare lanthanide, making up 1.4 parts per million of the Earth's crust, an abundance similar to tungsten. Holmium was discovered through isolation by Swedish chemist Per Theodor Cleve. It was also independently discovered by Jacques-Louis Soret and Marc Delafontaine, who together observed it spectroscopically in 1878. Its oxide was first isolated from rare-earth ores by Cleve in 1878. The element's name comes from Holmia, the Latin name for the city of Stockholm. [6] [7] [8]
Like many other lanthanides, holmium is found in the minerals monazite and gadolinite and is usually commercially extracted from monazite using ion-exchange techniques. Its compounds in nature and in nearly all of its laboratory chemistry are trivalently oxidized, containing Ho(III) ions. Trivalent holmium ions have fluorescent properties similar to many other rare-earth ions (while yielding their own set of unique emission light lines), and thus are used in the same way as some other rare earths in certain laser and glass-colorant applications.
Holmium has the highest magnetic permeability and magnetic saturation of any element and is thus used for the pole pieces of the strongest static magnets. Because holmium strongly absorbs neutrons, it is also used as a burnable poison in nuclear reactors.
Holmium is the eleventh member of the lanthanide series. In the periodic table, it appears in period 6, between the lanthanides dysprosium to its left and erbium to its right, and above the actinide einsteinium.
With a boiling point of 3,000 K (2,730 °C), holmium is the sixth most volatile lanthanide after ytterbium, europium, samarium, thulium and dysprosium. At standard temperature and pressure, holmium, like many of the second half of the lanthanides, normally assumes a hexagonally close-packed (hcp) structure. [9] Its 67 electrons are arranged in the configuration [Xe] 4f11 6s2, so that it has thirteen valence electrons filling the 4f and 6s subshells. [10]
Holmium, like all of the lanthanides, is paramagnetic at standard temperature and pressure. [11] However, holmium is ferromagnetic at temperatures below 19 K (−254.2 °C; −425.5 °F). [12] It has the highest magnetic moment (10.6 μB ) of any naturally occurring element [13] and possesses other unusual magnetic properties. When combined with yttrium, it forms highly magnetic compounds. [14]
Holmium metal tarnishes slowly in air, forming a yellowish oxide layer that has an appearance similar to that of iron rust. It burns readily to form holmium(III) oxide: [15]
It is a relatively soft and malleable element that is fairly corrosion-resistant and chemically stable in dry air at standard temperature and pressure. In moist air and at higher temperatures, however, it quickly oxidizes, forming a yellowish oxide. [16] In pure form, holmium possesses a metallic, bright silvery luster.
Holmium is quite electropositive: on the Pauling electronegativity scale, it has an electronegativity of 1.23. [17] It is generally trivalent. It reacts slowly with cold water and quickly with hot water to form holmium(III) hydroxide: [18]
Holmium metal reacts with all the stable halogens: [19]
Holmium dissolves readily in dilute sulfuric acid to form solutions containing the yellow Ho(III) ions, which exist as a [Ho(OH2)9]3+ complexes: [19]
As with many lanthanides, holmium is usually found in the +3 oxidation state, forming compounds such as holmium(III) fluoride (HoF3) and holmium(III) chloride (HoCl3). Holmium in solution is in the form of Ho3+ surrounded by nine molecules of water. Holmium dissolves in acids. [13] However, holmium is also found to exist in +2, +1 and 0 oxidation states. [20] [10]
The isotopes of holmium range from 140Ho to 175Ho. The primary decay mode before the most abundant stable isotope, 165Ho, is positron emission, and the primary mode after is beta minus decay. The primary decay products before 165Ho are terbium and dysprosium isotopes, and the primary products after are erbium isotopes. [21]
Natural holmium consists of one primordial isotope, holmium-165; [13] it is the only isotope of holmium that is thought to be stable, although it is predicted to undergo alpha decay to terbium-161 with a very long half-life. [22] Of the 35 synthetic radioactive isotopes that are known, the most stable one is holmium-163 (163Ho), with a half-life of 4570 years. [23] All other radioisotopes have ground-state half-lives not greater than 1.117 days, with the longest, holmium-166 (166Ho) having a half-life of 26.83 hours, [24] and most have half-lives under 3 hours.
166m1Ho has a half-life of around 1200 years. [25] The high excitation energy, resulting in a particularly rich spectrum of decay gamma rays produced when the metastable state de-excites, makes this isotope useful as a means for calibrating gamma ray spectrometers. [26]
Holmium(III) oxide is the only oxide of holmium. It changes its color depending on the lighting conditions. In daylight, it has a yellowish color. Under trichromatic light, it appears orange red, almost indistinguishable from the appearance of erbium oxide under the same lighting conditions. [27] The color change is related to the sharp emission lines of trivalent holmium ions acting as red phosphors. [28] Holmium(III) oxide appears pink under a cold-cathode fluorescent lamp.
Other chalcogenides are known for holmium. Holmium(III) sulfide has orange-yellow crystals in the monoclinic crystal system, [21] with the space group P21/m (No. 11). [29] Under high pressure, holmium(III) sulfide can form in the cubic and orthorhombic crystal systems. [30] It can be obtained by the reaction of holmium(III) oxide and hydrogen sulfide at 1,598 K (1,325 °C; 2,417 °F). [31] Holmium(III) selenide is also known. It is antiferromagnetic below 6 K. [32]
All four trihalides of holmium are known. Holmium(III) fluoride is a yellowish powder that can be produced by reacting holmium(III) oxide and ammonium fluoride, then crystallising it from the ammonium salt formed in solution. [33] Holmium(III) chloride can be prepared in a similar way, with ammonium chloride instead of ammonium fluoride. [34] It has the YCl3 layer structure in the solid state. [35] These compounds, as well as holmium(III) bromide and holmium(III) iodide, can be obtained by the direct reaction of the elements: [19]
In addition, holmium(III) iodide can be obtained by the direct reaction of holmium and mercury(II) iodide, then removing the mercury by distillation. [36]
Organoholmium compounds are very similar to those of the other lanthanides, as they all share an inability to undergo π backbonding. They are thus mostly restricted to the mostly ionic cyclopentadienides (isostructural with those of lanthanum) and the σ-bonded simple alkyls and aryls, some of which may be polymeric. [37]
Holmium (Holmia, Latin name for Stockholm) was discovered by the Swiss chemists Jacques-Louis Soret and Marc Delafontaine in 1878 who noticed the aberrant spectrographic emission spectrum of the then-unknown element (they called it "Element X"). [38] [39]
The Swedish chemist Per Teodor Cleve also independently discovered the element while he was working on erbia earth (erbium oxide). He was the first to isolate the new element. [7] [6] [40] Using the method developed by the Swedish chemist Carl Gustaf Mosander, Cleve first removed all of the known contaminants from erbia. The result of that effort was two new materials, one brown and one green. He named the brown substance holmia (after the Latin name for Cleve's home town, Stockholm) and the green one thulia. Holmia was later found to be the holmium oxide, and thulia was thulium oxide. [41]
In the English physicist Henry Moseley's classic paper on atomic numbers, holmium was assigned the value 66. The holmium preparation he had been given to investigate had been impure, dominated by neighboring (at the time undiscovered) dysprosium. He would have seen x-ray emission lines for both elements, but assumed that the dominant ones belonged to holmium, instead of the dysprosium impurity. [42]
Like all the other rare-earth elements, holmium is not naturally found as a free element. It occurs combined with other elements in gadolinite, monazite and other rare-earth minerals. No holmium-dominant mineral has yet been found. The main mining areas are China, United States, Brazil, India, Sri Lanka, and Australia with reserves of holmium estimated as 400,000 tonnes. [41] The annual production of holmium metal is of about 10 tonnes per year. [43]
Holmium makes up 1.3 parts per million of the Earth's crust by mass. [44] Holmium makes up 1 part per million of the soils, 400 parts per quadrillion of seawater, and almost none of Earth's atmosphere, which is very rare for a lanthanide. [41] It makes up 500 parts per trillion of the universe by mass. [45]
Holmium is commercially extracted by ion exchange from monazite sand (0.05% holmium), but is still difficult to separate from other rare earths. The element has been isolated through the reduction of its anhydrous chloride or fluoride with metallic calcium. [21] Its estimated abundance in the Earth's crust is 1.3 mg/kg. Holmium obeys the Oddo–Harkins rule: as an odd-numbered element, it is less abundant than both dysprosium and erbium. However, it is the most abundant of the odd-numbered heavy lanthanides. Of the lanthanides, only promethium, thulium, lutetium and terbium are less abundant on Earth. The principal current source are some of the ion-adsorption clays of southern China. Some of these have a rare-earth composition similar to that found in xenotime or gadolinite. Yttrium makes up about two-thirds of the total by mass; holmium is around 1.5%. [46] Holmium is relatively inexpensive for a rare-earth metal with the price about 1000 USD/kg. [47]
Glass containing holmium oxide and holmium oxide solutions (usually in perchloric acid) have sharp optical absorption peaks in the spectral range 200 to 900 nm. They are therefore used as a calibration standard for optical spectrophotometers. [48] [49] [50] The radioactive but long-lived 166m1Ho is used in calibration of gamma-ray spectrometers. [51]
Holmium is used to create the strongest artificially generated magnetic fields, when placed within high-strength magnets as a magnetic pole piece (also called a magnetic flux concentrator). [52] Holmium is also used in the manufacture of some permanent magnets.
Holmium-doped yttrium iron garnet (YIG) and yttrium lithium fluoride have applications in solid-state lasers, and Ho-YIG has applications in optical isolators and in microwave equipment (e.g., YIG spheres). Holmium lasers emit at 2.1 micrometres. [53] They are used in medical, dental, and fiber-optical applications. [14] It is also being considered for usage in the enucleation of the prostate. [54]
Since holmium can absorb nuclear fission-bred neutrons, it is used as a burnable poison to regulate nuclear reactors. [41] It is used as a colorant for cubic zirconia, providing pink coloring, [55] and for glass, providing yellow-orange coloring. [56] In March 2017, IBM announced that they had developed a technique to store one bit of data on a single holmium atom set on a bed of magnesium oxide. [57] With sufficient quantum and classical control techniques, holmium may be a good candidate to make quantum computers. [58]
Holmium plays no biological role in humans, but its salts are able to stimulate metabolism. [21] Humans typically consume about a milligram of holmium a year. Plants do not readily take up holmium from the soil. Some vegetables have had their holmium content measured, and it amounted to 100 parts per trillion. [59] Holmium and its soluble salts are slightly toxic if ingested, but insoluble holmium salts are nontoxic. Metallic holmium in dust form presents a fire and explosion hazard. [60] [61] [62] Large amounts of holmium salts can cause severe damage if inhaled, consumed orally, or injected. The biological effects of holmium over a long period of time are not known. Holmium has a low level of acute toxicity. [63]
Dysprosium is a chemical element; it has symbol Dy and atomic number 66. It is a rare-earth element in the lanthanide series with a metallic silver luster. Dysprosium is never found in nature as a free element, though, like other lanthanides, it is found in various minerals, such as xenotime. Naturally occurring dysprosium is composed of seven isotopes, the most abundant of which is 164Dy.
Europium is a chemical element; it has symbol Eu and atomic number 63. Europium is a silvery-white metal of the lanthanide series that reacts readily with air to form a dark oxide coating. It is the most chemically reactive, least dense, and softest of the lanthanide elements. It is soft enough to be cut with a knife. Europium was isolated in 1901 and named after the continent of Europe. Europium usually assumes the oxidation state +3, like other members of the lanthanide series, but compounds having oxidation state +2 are also common. All europium compounds with oxidation state +2 are slightly reducing. Europium has no significant biological role and is relatively non-toxic compared to other heavy metals. Most applications of europium exploit the phosphorescence of europium compounds. Europium is one of the rarest of the rare-earth elements on Earth.
Erbium is a chemical element; it has symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, originally found in the gadolinite mine in Ytterby, Sweden, which is the source of the element's name.
Lanthanum is a chemical element; it has symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lanthanum and lutetium in the periodic table, of which lanthanum is the first and the prototype. Lanthanum is traditionally counted among the rare earth elements. Like most other rare earth elements, its usual oxidation state is +3, although some compounds are known with an oxidation state of +2. Lanthanum has no biological role in humans but is essential to some bacteria. It is not particularly toxic to humans but does show some antimicrobial activity.
Lutetium is a chemical element; it has symbol Lu and atomic number 71. It is a silvery white metal, which resists corrosion in dry air, but not in moist air. Lutetium is the last element in the lanthanide series, and it is traditionally counted among the rare earth elements; it can also be classified as the first element of the 6th-period transition metals.
The lanthanide or lanthanoid series of chemical elements comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals. Lutetium is also sometimes considered a lanthanide, despite being a d-block element and a transition metal.
Neodymium is a chemical element; it has symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarnishes in air and moisture. When oxidized, neodymium reacts quickly producing pink, purple/blue and yellow compounds in the +2, +3 and +4 oxidation states. It is generally regarded as having one of the most complex spectra of the elements. Neodymium was discovered in 1885 by the Austrian chemist Carl Auer von Welsbach, who also discovered praseodymium. It is present in significant quantities in the minerals monazite and bastnäsite. Neodymium is not found naturally in metallic form or unmixed with other lanthanides, and it is usually refined for general use. Neodymium is fairly common—about as common as cobalt, nickel, or copper—and is widely distributed in the Earth's crust. Most of the world's commercial neodymium is mined in China, as is the case with many other rare-earth metals.
Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the lanthanides. It was discovered in 1879 by spectral analysis of the minerals euxenite and gadolinite from Scandinavia.
Terbium is a chemical element; it has the symbol Tb and atomic number 65. It is a silvery-white, rare earth metal that is malleable, and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with water, evolving hydrogen gas. Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite, xenotime and euxenite.
Thulium is a chemical element; it has symbol Tm and atomic number 69. It is the thirteenth element in the lanthanide series of metals. It is the second-least abundant lanthanide in the Earth's crust, after radioactively unstable promethium. It is an easily workable metal with a bright silvery-gray luster. It is fairly soft and slowly tarnishes in air. Despite its high price and rarity, thulium is used as a dopant in solid-state lasers, and as the radiation source in some portable X-ray devices. It has no significant biological role and is not particularly toxic.
Ytterbium is a chemical element; it has symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. Like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density, melting point and boiling point are much lower than those of most other lanthanides.
Gadolinite, sometimes known as ytterbite, is a silicate mineral consisting principally of the silicates of cerium, lanthanum, neodymium, yttrium, beryllium, and iron with the formula (Ce,La,Nd,Y)2FeBe2Si2O10. It is called gadolinite-(Ce) or gadolinite-(Y), depending on the prominent composing element. It may contain 35.5% yttria sub-group rare earths, 2.2% ceria earths, as much as to 11.6% BeO, and traces of thorium. It is found in Sweden, Norway, and the US.
Praseodymium is a chemical element; it has symbol Pr and the atomic number 59. It is the third member of the lanthanide series and is considered one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for its magnetic, electrical, chemical, and optical properties. It is too reactive to be found in native form, and pure praseodymium metal slowly develops a green oxide coating when exposed to air.
Group 3 is the first group of transition metals in the periodic table. This group is closely related to the rare-earth elements. It contains the four elements scandium (Sc), yttrium (Y), lutetium (Lu), and lawrencium (Lr). The group is also called the scandium group or scandium family after its lightest member.
Holmium(III) oxide, or holmium oxide is a chemical compound of the rare-earth element holmium and oxygen with the formula Ho2O3. Together with dysprosium(III) oxide (Dy2O3), holmium oxide is one of the most powerfully paramagnetic substances known. The oxide, also called holmia, occurs as a component of the related erbium oxide mineral called erbia. Typically, the oxides of the trivalent lanthanides coexist in nature, and separation of these components requires specialized methods. Holmium oxide is used in making specialty colored glasses. Glass containing holmium oxide and holmium oxide solutions have a series of sharp optical absorption peaks in the visible spectral range. They are therefore traditionally used as a convenient calibration standard for optical spectrophotometers.
Gadolinium(III) oxide (archaically gadolinia) is an inorganic compound with the formula Gd2O3. It is one of the most commonly available forms of the rare-earth element gadolinium, derivatives, of which are potential contrast agents for magnetic resonance imaging.
Carl Axel Arrhenius was a Swedish military officer, amateur geologist, and chemist. He is best known for his discovery of the mineral ytterbite in 1787.
Yttrium is a chemical element; it has symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals and is never found in nature as a free element. 89Y is the only stable isotope and the only isotope found in the Earth's crust.
Terbium compounds are compounds formed by the lanthanide metal terbium (Tb). Terbium generally exhibits the +3 oxidation state in these compounds, such as in TbCl3, Tb(NO3)3 and Tb(CH3COO)3. Compounds with terbium in the +4 oxidation state are also known, such as TbO2 and BaTbF6. Terbium can also form compounds in the 0, +1 and +2 oxidation states.
Erbium compounds are compounds containing the element erbium (Er). These compounds are usually dominated by erbium in the +3 oxidation state, although the +2, +1 and 0 oxidation states have also been reported.
{{cite journal}}
: CS1 maint: DOI inactive as of January 2024 (link){{cite web}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: others (link){{cite web}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: others (link)