Orthorhombic crystal system

Last updated

In crystallography, the orthorhombic crystal system is one of the 7 crystal systems. Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base (a by b) and height (c), such that a, b, and c are distinct. All three bases intersect at 90° angles, so the three lattice vectors remain mutually orthogonal.

Contents

Bravais lattices

There are four orthorhombic Bravais lattices: primitive orthorhombic, base-centered orthorhombic, body-centered orthorhombic, and face-centered orthorhombic.

Bravais latticePrimitive
orthorhombic
Base-centered
orthorhombic
Body-centered
orthorhombic
Face-centered
orthorhombic
Pearson symbol oPoSoIoF
Unit cell Orthorhombic.svg Base-centered orthorhombic.svg Orthorhombic-body-centered.svg Orthorhombic-face-centered.svg

For the base-centered orthorhombic lattice, the primitive cell has the shape of a right rhombic prism; [1] it can be constructed because the two-dimensional centered rectangular base layer can also be described with primitive rhombic axes. Note that the length of the primitive cell below equals of the conventional cell above.

Right rhombic prism primitive cell
Rhombic prism.svg
Primitive cell of the base-centered orthorhombic lattice
Rectangular unit cells centered.svg
Relationship between base layers of primitive and conventional cells

Crystal classes

The orthorhombic crystal system class names, examples, Schönflies notation, Hermann-Mauguin notation, point groups, International Tables for Crystallography space group number, [2] orbifold notation, type, and space groups are listed in the table below.

Point groupTypeExample Space groups
Name [3] Schön. Intl Orb. Cox.  PrimitiveBase-centeredFace-centeredBody-centered
16–24Rhombic disphenoidalD2 (V)222222[2,2]+ Enantiomorphic Epsomite P222, P2221, P21212, P212121C2221, C222F222I222, I212121
25–46Rhombic pyramidalC2vmm2*22[2] Polar Hemimorphite, bertrandite Pmm2, Pmc21, Pcc2, Pma2, Pca21, Pnc2, Pmn21, Pba2, Pna21, Pnn2Cmm2, Cmc21, Ccc2
Amm2, Aem2, Ama2, Aea2
Fmm2, Fdd2Imm2, Iba2, Ima2
47–74Rhombic dipyramidalD2h (Vh)mmm*222[2,2] Centrosymmetric Olivine, aragonite, marcasite Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, PnmaCmcm, Cmca, Cmmm, Cccm, Cmme, CcceFmmm, FdddImmm, Ibam, Ibca, Imma

In two dimensions

In two dimensions there are two orthorhombic Bravais lattices: primitive rectangular and centered rectangular.

Bravais latticeRectangularCentered rectangular
Pearson symbol opoc
Unit cell 2d op rectangular.svg 2d oc rectangular.svg

See also

Related Research Articles

<span class="mw-page-title-main">Crystal structure</span> Ordered arrangement of atoms, ions, or molecules in a crystalline material

In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter.

<span class="mw-page-title-main">Tetragonal crystal system</span> Lattice point group

In crystallography, the tetragonal crystal system is one of the 7 crystal systems. Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a square base (a by a) and height (c, which is different from a).

In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell does not necessarily have unit size, or even a particular size at all. Rather, the primitive cell is the closest analogy to a unit vector, since it has a determined size for a given lattice and is the basic building block from which larger cells are constructed.

<span class="mw-page-title-main">Crystal system</span> Classification of crystalline materials by their three-dimensional structural geometry

In crystallography, a crystal system is a set of point groups. A lattice system is a set of Bravais lattices. Space groups are classified into crystal systems according to their point groups, and into lattice systems according to their Bravais lattices. Crystal systems that have space groups assigned to a common lattice system are combined into a crystal family.

<span class="mw-page-title-main">Space group</span> Symmetry group of a configuration in space

In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group are the rigid transformations of the pattern that leave it unchanged. In three dimensions, space groups are classified into 219 distinct types, or 230 types if chiral copies are considered distinct. Space groups are discrete cocompact groups of isometries of an oriented Euclidean space in any number of dimensions. In dimensions other than 3, they are sometimes called Bieberbach groups.

<span class="mw-page-title-main">Lattice (group)</span> Periodic set of points

In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point. Closure under addition and subtraction means that a lattice must be a subgroup of the additive group of the points in the space, and the requirements of minimum and maximum distance can be summarized by saying that a lattice is a Delone set. More abstractly, a lattice can be described as a free abelian group of dimension which spans the vector space . For any basis of , the subgroup of all linear combinations with integer coefficients of the basis vectors forms a lattice, and every lattice can be formed from a basis in this way. A lattice may be viewed as a regular tiling of a space by a primitive cell.

<span class="mw-page-title-main">Monoclinic crystal system</span> One of the 7 crystal systems in crystallography

In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic system. They form a parallelogram prism. Hence two pairs of vectors are perpendicular, while the third pair makes an angle other than 90°.

<span class="mw-page-title-main">Bravais lattice</span> Geometry and crystallography point array

In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (1850), is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by

<span class="mw-page-title-main">Triclinic crystal system</span> One of the seven crystal systems

In crystallography, the tricliniccrystal system is one of the 7 crystal systems. A crystal system is described by three basis vectors. In the triclinic system, the crystal is described by vectors of unequal length, as in the orthorhombic system. In addition, the angles between these vectors must all be different and may not include 90°.

<span class="mw-page-title-main">Cubic crystal system</span> Crystallographic system where the unit cell is in the shape of a cube

In crystallography, the cubiccrystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

<span class="mw-page-title-main">Miller index</span> Description of crystal lattice planes

Miller indices form a notation system in crystallography for lattice planes in crystal (Bravais) lattices.

<span class="mw-page-title-main">Wigner–Seitz cell</span> Primitive cell of crystal lattices with Voronoi decomposition applied

The Wigner–Seitz cell, named after Eugene Wigner and Frederick Seitz, is a primitive cell which has been constructed by applying Voronoi decomposition to a crystal lattice. It is used in the study of crystalline materials in crystallography.

<span class="mw-page-title-main">Hermann–Mauguin notation</span> Notation to represent symmetry in point groups, plane groups and space groups

In geometry, Hermann–Mauguin notation is used to represent the symmetry elements in point groups, plane groups and space groups. It is named after the German crystallographer Carl Hermann and the French mineralogist Charles-Victor Mauguin. This notation is sometimes called international notation, because it was adopted as standard by the International Tables For Crystallography since their first edition in 1935.

<span class="mw-page-title-main">Supercell (crystal)</span>

In solid-state physics and crystallography, a crystal structure is described by a unit cell repeating periodically over space. There are an infinite number of choices for unit cells, with different shapes and sizes, which can describe the same crystal, and different choices can be useful for different purposes.

The Pearson symbol, or Pearson notation, is used in crystallography as a means of describing a crystal structure, and was originated by W. B. Pearson. The symbol is made up of two letters followed by a number. For example:

<span class="mw-page-title-main">Hexagonal crystal family</span> Union of crystal groups with related structures and lattices

In crystallography, the hexagonal crystal family is one of the 7 crystal families, which includes two crystal systems and two lattice systems. While commonly confused, the trigonal crystal system and the rhombohedral lattice system are not equivalent. In particular, there are crystals that have trigonal symmetry but belong to the hexagonal lattice.

<span class="mw-page-title-main">Parallelohedron</span> Polyhedron that tiles space by translation

In geometry, a parallelohedron is a polyhedron that can be translated without rotations in 3-dimensional Euclidean space to fill space with a honeycomb in which all copies of the polyhedron meet face-to-face. There are five types of parallelohedron, first identified by Evgraf Fedorov in 1885 in his studies of crystallographic systems: the cube, hexagonal prism, rhombic dodecahedron, elongated dodecahedron, and truncated octahedron.

In solid state physics, the magnetic space groups, or Shubnikov groups, are the symmetry groups which classify the symmetries of a crystal both in space, and in a two-valued property such as electron spin. To represent such a property, each lattice point is colored black or white, and in addition to the usual three-dimensional symmetry operations, there is a so-called "antisymmetry" operation which turns all black lattice points white and all white lattice points black. Thus, the magnetic space groups serve as an extension to the crystallographic space groups which describe spatial symmetry alone.

<span class="mw-page-title-main">Rectangular lattice</span> 2-dimensional lattice

The rectangular lattice and rhombic lattice constitute two of the five two-dimensional Bravais lattice types. The symmetry categories of these lattices are wallpaper groups pmm and cmm respectively. The conventional translation vectors of the rectangular lattices form an angle of 90° and are of unequal lengths.

References

  1. See Hahn (2002) , p. 746, row oC, column Primitive, where the cell parameters are given as a1 = a2, α = β = 90°
  2. Prince, E., ed. (2006). International Tables for Crystallography. International Union of Crystallography. doi:10.1107/97809553602060000001. ISBN   978-1-4020-4969-9. S2CID   146060934.
  3. "The 32 crystal classes" . Retrieved 2018-06-19.

Further reading