Coxeter notation

Last updated
Fundamental domains of reflective 3D point groups
CDel node.png, [ ] = [1]
C1v
CDel node.pngCDel 2.pngCDel node.png, [2]
C2v
CDel node.pngCDel 3.pngCDel node.png, [3]
C3v
CDel node.pngCDel 4.pngCDel node.png, [4]
C4v
CDel node.pngCDel 5.pngCDel node.png, [5]
C5v
CDel node.pngCDel 6.pngCDel node.png, [6]
C6v
Spherical digonal hosohedron.svg
Order 2
Spherical square hosohedron.svg
Order 4
Spherical hexagonal hosohedron.svg
Order 6
Spherical octagonal hosohedron.svg
Order 8
Spherical decagonal hosohedron.svg
Order 10
Spherical dodecagonal hosohedron.svg
Order 12
CDel node.pngCDel 2.pngCDel node.png
[2] = [2,1]
D1h
CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
[2,2]
D2h
CDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
[2,3]
D3h
CDel node.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.png
[2,4]
D4h
CDel node.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.png
[2,5]
D5h
CDel node.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.png
[2,6]
D6h
Spherical digonal bipyramid.svg
Order 4
Spherical square bipyramid.svg
Order 8
Spherical hexagonal bipyramid.svg
Order 12
Spherical octagonal bipyramid.svg
Order 16
Spherical decagonal bipyramid.svg
Order 20
Spherical dodecagonal bipyramid.svg
Order 24
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png, [3,3], Td CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, [4,3], Oh CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png, [5,3], Ih
Spherical tetrakis hexahedron-3edge-color.png
Order 24
Spherical disdyakis dodecahedron-3and1-color.png
Order 48
Spherical compound of five octahedra.png
Order 120
Coxeter notation expresses Coxeter groups as a list of branch orders of a Coxeter diagram, like the polyhedral groups, CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png = [p,q]. Dihedral groups, CDel node.pngCDel 2.pngCDel node.pngCDel n.pngCDel node.png, can be expressed as a product [ ]×[n] or in a single symbol with an explicit order 2 branch, [2,n].

In geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson.

Contents

Reflectional groups

For Coxeter groups, defined by pure reflections, there is a direct correspondence between the bracket notation and Coxeter-Dynkin diagram. The numbers in the bracket notation represent the mirror reflection orders in the branches of the Coxeter diagram. It uses the same simplification, suppressing 2s between orthogonal mirrors.

The Coxeter notation is simplified with exponents to represent the number of branches in a row for linear diagram. So the An group is represented by [3n−1], to imply n nodes connected by n−1 order-3 branches. Example A2 = [3,3] = [32] or [31,1] represents diagrams CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png or CDel node.pngCDel split1.pngCDel nodes.png.

Coxeter initially represented bifurcating diagrams with vertical positioning of numbers, but later abbreviated with an exponent notation, like [...,3p,q] or [3p,q,r], starting with [31,1,1] or [3,31,1] = CDel node.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png or CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png as D4. Coxeter allowed for zeros as special cases to fit the An family, like A3 = [3,3,3,3] = [34,0,0] = [34,0] = [33,1] = [32,2], like CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png.

Coxeter groups formed by cyclic diagrams are represented by parentheseses inside of brackets, like [(p,q,r)] = CDel pqr.png for the triangle group (p q r). If the branch orders are equal, they can be grouped as an exponent as the length the cycle in brackets, like [(3,3,3,3)] = [3[4]], representing Coxeter diagram CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png or CDel branch.pngCDel 3ab.pngCDel branch.png. CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png can be represented as [3,(3,3,3)] or [3,3[3]].

More complicated looping diagrams can also be expressed with care. The paracompact Coxeter group CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png can be represented by Coxeter notation [(3,3,(3),3,3)], with nested/overlapping parentheses showing two adjacent [(3,3,3)] loops, and is also represented more compactly as [3[ ]×[ ]], representing the rhombic symmetry of the Coxeter diagram. The paracompact complete graph diagram CDel tet.png or CDel branch.pngCDel splitcross.pngCDel branch.png, is represented as [3[3,3]] with the superscript [3,3] as the symmetry of its regular tetrahedron coxeter diagram.

Finite groups
RankGroup
symbol
Bracket
notation
Coxeter
diagram
2A2[3]CDel node.pngCDel 3.pngCDel node.png
2B2[4]CDel node.pngCDel 4.pngCDel node.png
2H2[5]CDel node.pngCDel 5.pngCDel node.png
2G2[6]CDel node.pngCDel 6.pngCDel node.png
2I2(p)[p]CDel node.pngCDel p.pngCDel node.png
3 Ih, H3[5,3]CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
3 Td, A3[3,3]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3 Oh, B3[4,3]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
4A4[3,3,3]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4B4[4,3,3]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4D4[31,1,1]CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
4 F4 [3,4,3]CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
4H4[5,3,3]CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
nAn[3n−1]CDel node.pngCDel 3.pngCDel node.pngCDel 3.png..CDel 3.pngCDel node.pngCDel 3.pngCDel node.png
nBn[4,3n−2]CDel node.pngCDel 4.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node.png
nDn[3n−3,1,1]CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6 E6 [32,2,1]CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7 E7 [33,2,1]CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
8 E8 [34,2,1]CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Affine groups
Group
symbol
Bracket
notation
Coxeter diagram
[∞]CDel node.pngCDel infin.pngCDel node.png
[3[3]]CDel node.pngCDel split1.pngCDel branch.png
[4,4]CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
[6,3]CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
[3[4]]CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png
[4,31,1]CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
[4,3,4]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[3[5]]CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
[4,3,31,1]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[4,3,3,4]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[ 31,1,1,1]CDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png
[3,4,3,3]CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3[n+1]]CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.png...CDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
or
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.png...CDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
[4,3n−3,31,1]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[4,3n−2,4]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[ 31,1,3n−4,31,1]CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[32,2,2]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
[33,3,1]CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
[35,2,1]CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Hyperbolic groups
Group
symbol
Bracket
notation
Coxeter
diagram
[p,q]
with 2(p + q) < pq
CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png
[(p,q,r)]
with
CDel pqr.png
[4,3,5]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[5,3,5]CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[3,5,3]CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
[5,31,1]CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes.png
[(3,3,3,4)]CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.png 
[(3,3,3,5)]CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.png 
[(3,4,3,4)]CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
[(3,4,3,5)]CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[(3,5,3,5)]CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[3,3,3,5]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[4,3,3,5]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[5,3,3,5]CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[5,3,31,1]CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[(3,3,3,3,4)]CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

For the affine and hyperbolic groups, the subscript is one less than the number of nodes in each case, since each of these groups was obtained by adding a node to a finite group's diagram.

Unconnected groups

The Coxeter diagram usually leaves order-2 branches undrawn, but the bracket notation includes an explicit 2 to connect the subgraphs. So the Coxeter diagram CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png = A2×A2 = 2A2 can be represented by [3]×[3] = [3]2 = [3,2,3]. Sometimes explicit 2-branches may be included either with a 2 label, or with a line with a gap: CDel node.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel node.pngCDel 3.pngCDel node.png or CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel 2.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png, as an identical presentation as [3,2,3].

Rank and dimension

Coxeter point group rank is equal to the number of nodes which is also equal to the dimension. A single mirror exists in 1-dimension, [ ], CDel node.png, while in 2-dimensions [1], CDel node.pngCDel 2.pngCDel node h2.png or [ ]×[ ]+. The 1 is a place-holder, not an actual branch order, but a marker for an orthogonal inactive mirror. The notation [n,1], represents a rank 3 group, as [n]×[ ]+ or CDel node.pngCDel n.pngCDel node.pngCDel 2.pngCDel node h2.png. Similarly, [1,1] as [ ]×[ ]+×[ ]+ or CDel node.pngCDel 2.pngCDel node h2.pngCDel 2.pngCDel node h2.png order 2 and [1,1]+ as [ ]+×[ ]+×[ ]+ or CDel node h2.pngCDel 2.pngCDel node h2.pngCDel 2.pngCDel node h2.png, order 1!

Subgroups

Coxeter's notation represents rotational/translational symmetry by adding a + superscript operator outside the brackets, [X]+ which cuts the order of the group [X] in half, thus an index 2 subgroup. This operator implies an even number of operators must be applied, replacing reflections with rotations (or translations). When applied to a Coxeter group, this is called a direct subgroup because what remains are only direct isometries without reflective symmetry.

The + operators can also be applied inside of the brackets, like [X,Y+] or [X,(Y,Z)+], and creates "semidirect" subgroups that may include both reflective and nonreflective generators. Semidirect subgroups can only apply to Coxeter group subgroups that have even order branches adjacent to it. Elements by parentheses inside of a Coxeter group can be give a + superscript operator, having the effect of dividing adjacent ordered branches into half order, thus is usually only applied with even numbers. For example, [4,3+] and [4,(3,3)+] (CDel node.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png).

If applied with adjacent odd branch, it doesn't create a subgroup of index 2, but instead creates overlapping fundamental domains, like [5,1+] = [5/2], which can define doubly wrapped polygons like a pentagram, {5/2}, and [5,3+] relates to Schwarz triangle [5/2,3], density 2.

Examples on Rank 2 groups
GroupOrderGeneratorsSubgroupOrderGeneratorsNotes
[p]CDel node n0.pngCDel p.pngCDel node n1.png2p{0,1}[p]+CDel node h2.pngCDel p.pngCDel node h2.pngp{01}Direct subgroup
[2p+] = [2p]+CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h2.png2p{01}[2p+]+ = [2p]+2 = [p]+CDel node h2.pngCDel p.pngCDel node h2.pngp{0101}
[2p]CDel node n0.pngCDel 2x.pngCDel p.pngCDel node n1.png4p{0,1}[1+,2p] = [p]CDel node h0.pngCDel 2x.pngCDel p.pngCDel node.png = CDel node h2.pngCDel 2x.pngCDel p.pngCDel node.png = CDel node.pngCDel p.pngCDel node.png2p{101,1}Half subgroups
[2p,1+] = [p]CDel node.pngCDel 2x.pngCDel p.pngCDel node h0.png = CDel node.pngCDel 2x.pngCDel p.pngCDel node h2.png = CDel node.pngCDel p.pngCDel node.png{0,010}
[1+,2p,1+] = [2p]+2 = [p]+CDel node h0.pngCDel 2x.pngCDel p.pngCDel node h0.png = CDel node h2.pngCDel 2c.pngCDel 2x.pngCDel p.pngCDel 2c.pngCDel node h2.png = CDel node h2.pngCDel p.pngCDel node h2.pngp{0101}Quarter group

Groups without neighboring + elements can be seen in ringed nodes Coxeter-Dynkin diagram for uniform polytopes and honeycomb are related to hole nodes around the + elements, empty circles with the alternated nodes removed. So the snub cube, CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png has symmetry [4,3]+ (CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png), and the snub tetrahedron, CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png has symmetry [4,3+] (CDel node.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png), and a demicube, h{4,3} = {3,3} (CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png or CDel nodes 10ru.pngCDel split2.pngCDel node.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png) has symmetry [1+,4,3] = [3,3] (CDel node h2.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png or CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel nodes.pngCDel split2.pngCDel node.png = CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png).

Note: Pyritohedral symmetry CDel node.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png can be written as CDel node.pngCDel 4.pngCDel 2c.pngCDel node h2.pngCDel 3.pngCDel node h2.png, separating the graph with gaps for clarity, with the generators {0,1,2} from the Coxeter group CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.png, producing pyritohedral generators {0,12}, a reflection and 3-fold rotation. And chiral tetrahedral symmetry can be written as CDel node h0.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png or CDel node h2.pngCDel 2c.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png, [1+,4,3+] = [3,3]+, with generators {12,0120}.

Halving subgroups and extended groups

Example halving operations
Dihedral symmetry domains 4.png Dihedral symmetry 4 half1.png
CDel node c1.pngCDel 4.pngCDel node c3.png
[1,4,1] = [4]
CDel node h0.pngCDel 4.pngCDel node c3.png = CDel node c3.pngCDel 2x.pngCDel node c3.png = CDel node c3.pngCDel 2.pngCDel node c3.png
[1+,4,1]=[2]=[ ]×[ ]
Dihedral symmetry 4 half2.png Cyclic symmetry 4 half.png
CDel node c1.pngCDel 4.pngCDel node h0.png = CDel node c1.pngCDel 2x.pngCDel node c1.png = CDel node c1.pngCDel 2.pngCDel node c1.png
[1,4,1+]=[2]=[ ]×[ ]
CDel node h0.pngCDel 4.pngCDel node h0.png = CDel node h0.pngCDel 4.pngCDel node h2.png = CDel node h2.pngCDel 4.pngCDel node h0.png = CDel node h2.pngCDel 2x.pngCDel node h2.png
[1+,4,1+] = [2]+

Johnson extends the + operator to work with a placeholder 1+ nodes, which removes mirrors, doubling the size of the fundamental domain and cuts the group order in half. [1] In general this operation only applies to individual mirrors bounded by even-order branches. The 1 represents a mirror so [2p] can be seen as [2p,1], [1,2p], or [1,2p,1], like diagram CDel node.pngCDel 2x.pngCDel p.pngCDel node.png or CDel node c1.pngCDel 2x.pngCDel p.pngCDel node c3.png, with 2 mirrors related by an order-2p dihedral angle. The effect of a mirror removal is to duplicate connecting nodes, which can be seen in the Coxeter diagrams: CDel node h0.pngCDel 2x.pngCDel p.pngCDel node c3.png = CDel labelp.pngCDel branch c3.png, or in bracket notation:[1+,2p, 1] = [1,p,1] = [p].

Each of these mirrors can be removed so h[2p] = [1+,2p,1] = [1,2p,1+] = [p], a reflective subgroup index 2. This can be shown in a Coxeter diagram by adding a + symbol above the node: CDel node h0.pngCDel 2x.pngCDel p.pngCDel node.png = CDel node.pngCDel 2x.pngCDel p.pngCDel node h0.png = CDel labelp.pngCDel branch.png.

If both mirrors are removed, a quarter subgroup is generated, with the branch order becoming a gyration point of half the order:

q[2p] = [1+,2p,1+] = [p]+, a rotational subgroup of index 4. CDel node h2.pngCDel 2c.pngCDel 2x.pngCDel p.pngCDel 2c.pngCDel node h2.png = CDel node h0.pngCDel 2x.pngCDel p.pngCDel node h0.png = CDel node h0.pngCDel 2x.pngCDel p.pngCDel node h2.png = CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h0.png = CDel labelp.pngCDel branch h2h2.png.

For example, (with p=2): [4,1+] = [1+,4] = [2] = [ ]×[ ], order 4. [1+,4,1+] = [2]+, order 2.

The opposite to halving is doubling [2] which adds a mirror, bisecting a fundamental domain, and doubling the group order.

[[p]] = [2p]

Halving operations apply for higher rank groups, like tetrahedral symmetry is a half group of octahedral group: h[4,3] = [1+,4,3] = [3,3], removing half the mirrors at the 4-branch. The effect of a mirror removal is to duplicate all connecting nodes, which can be seen in the Coxeter diagrams: CDel node h0.pngCDel 2x.pngCDel p.pngCDel node c1.pngCDel 3.pngCDel node c2.png = CDel labelp.pngCDel branch c1.pngCDel split2.pngCDel node c2.png, h[2p,3] = [1+,2p,3] = [(p,3,3)].

If nodes are indexed, half subgroups can be labeled with new mirrors as composites. Like CDel node n0.pngCDel 2x.pngCDel p.pngCDel node n1.png, generators {0,1} has subgroup CDel node h0.pngCDel 2x.pngCDel p.pngCDel node n1.png = CDel 2 n0.pngCDel node n1.pngCDel 3 n0.pngCDel p.pngCDel node n1.png, generators {1,010}, where mirror 0 is removed, and replaced by a copy of mirror 1 reflected across mirror 0. Also given CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.png, generators {0,1,2}, it has half group CDel node h0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.png = CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel 3 n0.pngCDel node n1.pngCDel 2 n0.png, generators {1,2,010}.

Doubling by adding a mirror also applies in reversing the halving operation: [[3,3]] = [4,3], or more generally [[(q,q,p)]] = [2p,q].

Tetrahedral symmetry Octahedral symmetry
Sphere symmetry group td.png
Td, [3,3] = [1+,4,3]
CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png = CDel nodeab c1.pngCDel split2.pngCDel node c1.png = CDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.png
(Order 24)
Sphere symmetry group oh.png
Oh, [4,3] = [[3,3]]
CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.png
(Order 48)

Radical subgroups

A radical subgroup is similar to an alternation, but removes the rotational generators. 43-radial subgroups.png
A radical subgroup is similar to an alternation, but removes the rotational generators.

Johnson also added an asterisk or star * operator for "radical" subgroups, [3] that acts similar to the + operator, but removes rotational symmetry. The index of the radical subgroup is the order of the removed element. For example, [4,3*] ≅ [2,2]. The removed [3] subgroup is order 6 so [2,2] is an index 6 subgroup of [4,3].

The radical subgroups represent the inverse operation to an extended symmetry operation. For example, [4,3*] ≅ [2,2], and in reverse [2,2] can be extended as [3[2,2]] ≅ [4,3]. The subgroups can be expressed as a Coxeter diagram: CDel node c1.pngCDel 4.pngCDel node.pngCDel 3s.pngCDel node.png or CDel node c1.pngCDel 4.pngCDel node x.pngCDel 3.pngCDel node x.pngCDel nodeab c1.pngCDel 2.pngCDel node c1.png. The removed node (mirror) causes adjacent mirror virtual mirrors to become real mirrors.

If [4,3] has generators {0,1,2}, [4,3+], index 2, has generators {0,12}; [1+,4,3] ≅ [3,3], index 2 has generators {010,1,2}; while radical subgroup [4,3*] ≅ [2,2], index 6, has generators {01210, 2, (012)3}; and finally [1+,4,3*], index 12 has generators {0(12)20, (012)201}.

Trionic subgroups

Rank 2 example, [6] trionic subgroups with 3 colors of mirror lines Trionic subgroups hexagonal symmetry.png
Rank 2 example, [6] trionic subgroups with 3 colors of mirror lines
Example on octahedral symmetry: [4,3 ] = [2,4]. 432 trionic subgroups.png
Example on octahedral symmetry: [4,3 ] = [2,4].
Example trionic subgroup on hexagonal symmetry [6,3] maps onto a larger [6,3] symmetry. Trionic subgroups hexagonal.png
Example trionic subgroup on hexagonal symmetry [6,3] maps onto a larger [6,3] symmetry.
Rank 3 Trionic Coxeter groups rank 3.png
Rank 3
Example trionic subgroups on octagonal symmetry [8,3] maps onto larger [4,8] symmetries. Hyperbolic 832 trionic subgroup 842.png
Example trionic subgroups on octagonal symmetry [8,3] maps onto larger [4,8] symmetries.
Rank 4 Trionic subgroups rank 4b.png
Rank 4

A trionic subgroup is an index 3 subgroup. Johnson defines a trionic subgroup with operator ⅄, index 3. For rank 2 Coxeter groups, [3], the trionic subgroup, [3] is [ ], a single mirror. And for [3p], the trionic subgroup is [3p] ≅ [p]. Given CDel node n0.pngCDel 3x.pngCDel p.pngCDel node n1.png, with generators {0,1}, has 3 trionic subgroups. They can be differentiated by putting the ⅄ symbol next to the mirror generator to be removed, or on a branch for both: [3p,1] = CDel node n0.pngCDel 3x.pngCDel p.pngCDel node trionic.png = CDel node n0.pngCDel p.pngCDel 3 n1.pngCDel 3 n0.pngCDel node n1.pngCDel 2 n0.pngCDel 2 n1.png, CDel node trionic.pngCDel 3x.pngCDel p.pngCDel node n1.png = CDel 2 n0.pngCDel 2 n1.pngCDel node n0.pngCDel 3 n1.pngCDel 3 n0.pngCDel p.pngCDel node n1.png, and [3p] = CDel node n0.pngCDel 3x.pngCDel 3trionic.pngCDel p.pngCDel node n1.png = CDel 2 n0.pngCDel node n1.pngCDel 3 n0.pngCDel p.pngCDel 3 n1.pngCDel node n0.pngCDel 2 n1.png with generators {0,10101}, {01010,1}, or {101,010}.

Trionic subgroups of tetrahedral symmetry: [3,3] ≅ [2+,4], relating the symmetry of the regular tetrahedron and tetragonal disphenoid.

For rank 3 Coxeter groups, [p,3], there is a trionic subgroup [p,3] ≅ [p/2,p], or CDel node n0.pngCDel 2x.pngCDel p.pngCDel node n1.pngCDel 3trionic.pngCDel node n2.png = CDel 2 n2.pngCDel 2 n1.pngCDel node n0.pngCDel 3 n1.pngCDel 3 n2.pngCDel p.pngCDel node n0.pngCDel 2x.pngCDel p.pngCDel node n1.png. For example, the finite group [4,3] ≅ [2,4], and Euclidean group [6,3] ≅ [3,6], and hyperbolic group [8,3] ≅ [4,8].

An odd-order adjacent branch, p, will not lower the group order, but create overlapping fundamental domains. The group order stays the same, while the density increases. For example, the icosahedral symmetry, [5,3], of the regular polyhedra icosahedron becomes [5/2,5], the symmetry of 2 regular star polyhedra. It also relates the hyperbolic tilings {p,3}, and star hyperbolic tilings {p/2,p}

For rank 4, [q,2p,3] = [2p,((p,q,q))], CDel node.pngCDel q.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3trionic.pngCDel node.png = CDel labelq.pngCDel branch.pngCDel split2-pq.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.png.

For example, [3,4,3] = [4,3,3], or CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3trionic.pngCDel node n3.png = CDel 2 n3.pngCDel 2 n2.pngCDel node n1.pngCDel 3 n2.pngCDel 3 n3.pngCDel 3.pngCDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.png, generators {0,1,2,3} in [3,4,3] with the trionic subgroup [4,3,3] generators {0,1,2,32123}. For hyperbolic groups, [3,6,3] = [6,3[3]], and [4,4,3] = [4,4,4].

Trionic subgroups of tetrahedral symmetry

[3,3] [?] [2 ,4] as one of 3 sets of 2 orthogonal mirrors in stereographic projection. The red, green, and blue represent 3 sets of mirrors, and the gray lines are removed mirrors, leaving 2-fold gyrations (purple diamonds). Trionic subgroups of tetrahedral symmetry stereographic projection.png
[3,3] ≅ [2 ,4] as one of 3 sets of 2 orthogonal mirrors in stereographic projection. The red, green, and blue represent 3 sets of mirrors, and the gray lines are removed mirrors, leaving 2-fold gyrations (purple diamonds).
Trionic relations of [3,3] 33-trionic subgroups.png
Trionic relations of [3,3]

Johnson identified two specific trionic subgroups [4] of [3,3], first an index 3 subgroup [3,3] ≅ [2+,4], with [3,3] (CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 3.pngCDel node n2.png = CDel node.pngCDel split1.pngCDel nodes.png = CDel node.pngCDel split1.pngCDel branch.pngCDel label2.png) generators {0,1,2}. It can also be written as [(3,3,2)] (CDel node.pngCDel split1.pngCDel 2c.pngCDel branch h2h2.pngCDel label2.png) as a reminder of its generators {02,1}. This symmetry reduction is the relationship between the regular tetrahedron and the tetragonal disphenoid, represent a stretching of a tetrahedron perpendicular to two opposite edges.

Secondly he identifies a related index 6 subgroup [3,3]Δ or [(3,3,2)]+ (CDel node h2.pngCDel split1.pngCDel 2c.pngCDel branch h2h2.pngCDel label2.png), index 3 from [3,3]+ ≅ [2,2]+, with generators {02,1021}, from [3,3] and its generators {0,1,2}.

These subgroups also apply within larger Coxeter groups with [3,3] subgroup with neighboring branches all even order.

Trionic subgroup relations of [3,3,4] 334 trionic subgroups2.png
Trionic subgroup relations of [3,3,4]

For example, [(3,3)+,4], [(3,3),4], and [(3,3)Δ,4] are subgroups of [3,3,4], index 2, 3 and 6 respectively. The generators of [(3,3),4] ≅ [[4,2,4]] ≅ [8,2+,8], order 128, are {02,1,3} from [3,3,4] generators {0,1,2,3}. And [(3,3)Δ,4] ≅ [[4,2+,4]], order 64, has generators {02,1021,3}. As well, [3,4,3] ≅ [(3,3),4].

Also related [31,1,1] = [3,3,4,1+] has trionic subgroups: [31,1,1] = [(3,3),4,1+], order 64, and 1=[31,1,1]Δ = [(3,3)Δ,4,1+] ≅ [[4,2+,4]]+, order 32.

Central inversion

A 2D central inversion is a 180 degree rotation, [2] Point Reflection.png
A 2D central inversion is a 180 degree rotation, [2]

A central inversion, order 2, is operationally differently by dimension. The group [ ]n = [2n−1] represents n orthogonal mirrors in n-dimensional space, or an n-flat subspace of a higher dimensional space. The mirrors of the group [2n−1] are numbered . The order of the mirrors doesn't matter in the case of an inversion. The matrix of a central inversion is , the Identity matrix with negative one on the diagonal.

From that basis, the central inversion has a generator as the product of all the orthogonal mirrors. In Coxeter notation this inversion group is expressed by adding an alternation + to each 2 branch. The alternation symmetry is marked on Coxeter diagram nodes as open nodes.

A Coxeter-Dynkin diagram can be marked up with explicit 2 branches defining a linear sequence of mirrors, open-nodes, and shared double-open nodes to show the chaining of the reflection generators.

For example, [2+,2] and [2,2+] are subgroups index 2 of [2,2], CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png, and are represented as CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel 2.pngCDel node.png (or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel node.png) and CDel node.pngCDel 2.pngCDel node h2.pngCDel 2x.pngCDel node h2.png (or CDel node.pngCDel 2.pngCDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png) with generators {01,2} and {0,12} respectively. Their common subgroup index 4 is [2+,2+], and is represented by CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png (or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h4.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png), with the double-open CDel node h4.png marking a shared node in the two alternations, and a single rotoreflection generator {012}.

DimensionCoxeter notationOrderCoxeter diagramOperationGenerator
2[2]+2CDel node h2.pngCDel 2x.pngCDel node h2.png180° rotation, C2{01}
3[2+,2+]2CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png rotoreflection, Ci or S2{012}
4[2+,2+,2+]2CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png double rotation {0123}
5[2+,2+,2+,2+]2CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngdouble rotary reflection{01234}
6[2+,2+,2+,2+,2+]2CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngtriple rotation{012345}
7[2+,2+,2+,2+,2+,2+]2CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngtriple rotary reflection{0123456}

Rotations and rotary reflections

Rotations and rotary reflections are constructed by a single single-generator product of all the reflections of a prismatic group, [2p]×[2q]×... where gcd(p,q,...)=1, they are isomorphic to the abstract cyclic group Zn, of order n=2pq.

The 4-dimensional double rotations, [2p+,2+,2q+] (with gcd(p,q)=1), which include a central group, and are expressed by Conway as ±[Cp×Cq], [5] order 2pq. From Coxeter diagram CDel node n0.pngCDel 2x.pngCDel p.pngCDel node n1.pngCDel 2.pngCDel node n2.pngCDel 2x.pngCDel q.pngCDel node n3.png, generators {0,1,2,3}, requires two generator for [2p+,2+,2q+], CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h2.png as {0123,0132}. Half groups, [2p+,2+,2q+]+, or cyclic graph, [(2p+,2+,2q+,2+)], CDel 3.pngCDel node h4.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.png expressed by Conway is [Cp×Cq], order pq, with one generator, like {0123}.

If there is a common factor f, the double rotation can be written as 1f[2pf+,2+,2qf+] (with gcd(p,q)=1), generators {0123,0132}, order 2pqf. For example, p=q=1, f=2, 12[4+,2+,4+] is order 4. And 1f[2pf+,2+,2qf+]+, generator {0123}, is order pqf. For example, 12[4+,2+,4+]+ is order 2, a central inversion.

In general a n-rotation group, [2p1+,2,2p2+,2,...,pn+] may require up to n generators if gcd(p1,..,pn)>1, as a product of all mirrors, and then swapping sequential pairs. The half group, [2p1+,2,2p2+,2,...,pn+]+ has generators squared. n-rotary reflections are similar.

Examples
DimensionCoxeter notationOrderCoxeter diagramOperationGeneratorsDirect subgroup
2[2p]+2pCDel node h2.pngCDel 2x.pngCDel p.pngCDel node h2.png Rotation {01}[2p]+2 = [p]+Simple rotation:
[2p]+2 = [p]+
order p
3[2p+,2+]CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h2.png rotary reflection {012}[2p+,2+]+ = [p]+
4[2p+,2+,2+]CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png double rotation {0123}[2p+,2+,2+]+ = [p]+
5[2p+,2+,2+,2+]CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngdouble rotary reflection{01234}[2p+,2+,2+,2+]+ = [p]+
6[2p+,2+,2+,2+,2+]CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngtriple rotation{012345}[2p+,2+,2+,2+,2+]+ = [p]+
7[2p+,2+,2+,2+,2+,2+]CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngtriple rotary reflection{0123456}[2p+,2+,2+,2+,2+,2+]+ = [p]+
4[2p+,2+,2q+]2pqCDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h2.pngdouble rotation{0123,
0132}
[2p+,2+,2q+]+Double rotation:
[2p+,2+,2q+]+
order pq
5[2p+,2+,2q+,2+]CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngdouble rotary reflection{01234,
01243}
[2p+,2+,2q+,2+]+
6[2p+,2+,2q+,2+,2+]CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngtriple rotation{012345,
012354,
013245}
[2p+,2+,2q+,2+,2+]+
7[2p+,2+,2q+,2+,2+,2+]CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngtriple rotary reflection{0123456,
0123465,
0124356,
0124356}
[2p+,2+,2q+,2+,2+,2+]+
6[2p+,2+,2q+,2+,2r+]2pqrCDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel r.pngCDel node h2.pngtriple rotation{012345,
012354,
013245}
[2p+,2+,2q+,2+,2r+]+Triple rotation:
[2p+,2+,2q+,2+,2r+]+
order pqr
7[2p+,2+,2q+,2+,2r+,2+]CDel node h2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel r.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngtriple rotary reflection{0123456,
0123465,
0124356,
0213456}
[2p+,2+,2q+,2+,2r+,2+]+

Commutator subgroups

Hasse diagram subgroups of [4,4], down to its commutator subgroup, index 8 Subgroups of 442.png
Hasse diagram subgroups of [4,4], down to its commutator subgroup, index 8

Simple groups with only odd-order branch elements have only a single rotational/translational subgroup of order 2, which is also the commutator subgroup, examples [3,3]+, [3,5]+, [3,3,3]+, [3,3,5]+. For other Coxeter groups with even-order branches, the commutator subgroup has index 2c, where c is the number of disconnected subgraphs when all the even-order branches are removed. [6]

For example, [4,4] has three independent nodes in the Coxeter diagram when the 4s are removed, so its commutator subgroup is index 23, and can have different representations, all with three + operators: [4+,4+]+, [1+,4,1+,4,1+], [1+,4,4,1+]+, or [(4+,4+,2+)]. A general notation can be used with +c as a group exponent, like [4,4]+3.

Example subgroups

Rank 2 example subgroups

Dihedral symmetry groups with even-orders have a number of subgroups. This example shows two generator mirrors of [4] in red and green, and looks at all subgroups by halfing, rank-reduction, and their direct subgroups. The group [4], CDel node n0.pngCDel 4.pngCDel node n1.png has two mirror generators 0, and 1. Each generate two virtual mirrors 101 and 010 by reflection across the other.

Rank 3 Euclidean example subgroups

The [4,4] group has 15 small index subgroups. This table shows them all, with a yellow fundamental domain for pure reflective groups, and alternating white and blue domains which are paired up to make rotational domains. Cyan, red, and green mirror lines correspond to the same colored nodes in the Coxeter diagram. Subgroup generators can be expressed as products of the original 3 mirrors of the fundamental domain, {0,1,2}, corresponding to the 3 nodes of the Coxeter diagram, CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 4.pngCDel node n2.png. A product of two intersecting reflection lines makes a rotation, like {012}, {12}, or {02}. Removing a mirror causes two copies of neighboring mirrors, across the removed mirror, like {010}, and {212}. Two rotations in series cut the rotation order in half, like {0101} or {(01)2}, {1212} or {(02)2}. A product of all three mirrors creates a transreflection, like {012} or {120}.

Hyperbolic example subgroups

The same set of 15 small subgroups exists on all triangle groups with even order elements, like [6,4] in the hyperbolic plane:

Parabolic subgroups

A parabolic subgroup of a Coxeter group can be identified by removing one or more generator mirrors represented with a Coxeter diagram. For example the octahedral group CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png has parabolic subgroups CDel node n1.pngCDel 4.pngCDel node n2.png, CDel node n1.pngCDel 2.pngCDel node n3.png, CDel node n2.pngCDel 3.pngCDel node n3.png, CDel node n1.png, CDel node n2.png, CDel node n3.png. In bracket notation [4,3] has parabolic subgroups [4],[2],[3], and a single mirror []. The order of the subgroup is known, and always an integer divisor group order, or index. Parabolic subgroups can also be written with x nodes, like CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png=[4,3] subgroup by removing second mirror: CDel node n1.pngCDel 4.pngCDel node x.pngCDel 3.pngCDel node n3.png or CDel node n1.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel node n3.png = CDel node n1.pngCDel 2.pngCDel node n3.png = [4,1×,3] = [2].

Petrie subgroup

A petrie subgroup of an irreducible coxeter group can be created by the product of all of the generators. It can be seen in the skew regular petrie polygon of a regular polytope. The order of the new group is called the Coxeter number of the original Coxeter group. The Coxeter number of a Coxeter group is 2m/n, where n is the rank, and m is the number of reflections. A petrie subgroup can be written with a π superscript. For example, [3,3]π is the petrie subgroup of a tetrahedral group, cyclic group order 4, generated by a rotoreflection. A rank 4 Coxeter group will have a double rotation generator, like [4,3,3]π is order 8.

Extended symmetry

Wallpaper
group
Triangle
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
p3m1 (*333)a1 Triangle symmetry1.png [3[3]]CDel node.pngCDel split1.pngCDel branch.png(none)
p6m (*632)i2 Triangle symmetry3.png [[3[3]]] ↔ [6,3]CDel node c1.pngCDel split1.pngCDel branch c2.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel branch.png 1 , CDel node.pngCDel split1.pngCDel branch 11.png 2
p31m (3*3)g3 Triangle symmetry2.png [3+[3[3]]] ↔ [6,3+]CDel branch.pngCDel split2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png(none)
p6 (632)r6 Triangle symmetry4.png [3[3[3]]]+ ↔ [6,3]+CDel branch c1.pngCDel split2.pngCDel node c1.pngCDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch hh.pngCDel split2.pngCDel node h.png (1)
p6m (*632)[3[3[3]]] ↔ [6,3]CDel branch 11.pngCDel split2.pngCDel node 1.png 3
In the Euclidean plane, the , [3[3]] Coxeter group can be extended in two ways into the , [6,3] Coxeter group and relates uniform tilings as ringed diagrams.

Coxeter's notation includes double square bracket notation, [[X]] to express automorphic symmetry within a Coxeter diagram. Johnson added alternative doubling by angled-bracket <[X]>. Johnson also added a prefix symmetry modifier [Y[X]], where Y can either represent symmetry of the Coxeter diagram of [X], or symmetry of the fundamental domain of [X].

For example, in 3D these equivalent rectangle and rhombic geometry diagrams of : CDel branch.pngCDel 3ab.pngCDel 3ab.pngCDel branch.png and CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png, the first doubled with square brackets, [[3[4]]] or twice doubled as [2[3[4]]], with [2], order 4 higher symmetry. To differentiate the second, angled brackets are used for doubling, <[3[4]]> and twice doubled as <2[3[4]]>, also with a different [2], order 4 symmetry. Finally a full symmetry where all 4 nodes are equivalent can be represented by [4[3[4]]], with the order 8, [4] symmetry of the square. But by considering the tetragonal disphenoid fundamental domain the [4] extended symmetry of the square graph can be marked more explicitly as [(2+,4)[3[4]]] or [2+,4[3[4]]].

Further symmetry exists in the cyclic and branching , , and diagrams. has order 2n symmetry of a regular n-gon, {n}, and is represented by [n[3[n]]]. and are represented by [3[31,1,1]] = [3,4,3] and [3[32,2,2]] respectively while by [(3,3)[31,1,1,1]] = [3,3,4,3], with the diagram containing the order 24 symmetry of the regular tetrahedron, {3,3}. The paracompact hyperbolic group = [31,1,1,1,1], CDel node.pngCDel branch3.pngCDel splitsplit2.pngCDel node.pngCDel split1.pngCDel nodes.png, contains the symmetry of a 5-cell, {3,3,3}, and thus is represented by [(3,3,3)[31,1,1,1,1]] = [3,4,3,3,3].

An asterisk * superscript is effectively an inverse operation, creating radical subgroups removing connected of odd-ordered mirrors. [7]

Examples:

Example Extended groups and radical subgroups
Extended groupsRadical subgroups Coxeter diagrams Index
[3[2,2]] = [4,3][4,3*] = [2,2]CDel node c1.pngCDel 4.pngCDel node.pngCDel 3s.pngCDel node.png = CDel node c1.pngCDel 2.pngCDel nodeab c1.png6
[(3,3)[2,2,2]] = [4,3,3][4,(3,3)*] = [2,2,2]CDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png = CDel nodeab c1.pngCDel 2.pngCDel nodeab c1.png24
[1[31,1]] = [[3,3]] = [3,4][3,4,1+] = [3,3]CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.png = CDel node c1.pngCDel split1.pngCDel nodeab c2.png2
[3[31,1,1]] = [3,4,3][3*,4,3] = [31,1,1]CDel node.pngCDel 3s.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.png = CDel node c1.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c2.png6
[2[31,1,1,1]] = [4,3,3,4][1+,4,3,3,4,1+] = [31,1,1,1]CDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png = CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.png4
[3[3,31,1,1]] = [3,3,4,3][3*,4,3,3] = [31,1,1,1]CDel node.pngCDel 3s.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png = CDel node c1.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel 3.pngCDel node c3.png6
[(3,3)[31,1,1,1]] = [3,4,3,3][3,4,(3,3)*] = [31,1,1,1]CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png = CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png24
[2[3,31,1,1,1]] = [3,(3,4)1,1][3,(3,4,1+)1,1] = [3,31,1,1,1]CDel node c4.pngCDel 3.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.pngCDel 4a4b.pngCDel nodes.png = CDel node c4.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c3.pngCDel split1.pngCDel nodeab c2.png4
[(2,3)[1,131,1,1]] = [4,3,3,4,3][3*,4,3,3,4,1+] = [31,1,1,1,1]CDel node.pngCDel 3s.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png = CDel node c1.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.png12
[(3,3)[3,31,1,1,1]] = [3,3,4,3,3][3,3,4,(3,3)*] = [31,1,1,1,1]CDel node c3.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png = CDel node c3.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png24
[(3,3,3)[31,1,1,1,1]] = [3,4,3,3,3][3,4,(3,3,3)*] = [31,1,1,1,1]CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png = CDel node c1.pngCDel branch3 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png120
Extended groupsRadical subgroupsCoxeter diagramsIndex
[1[3[3]]] = [3,6][3,6,1+] = [3[3]]CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node h0.png = CDel node c1.pngCDel split1.pngCDel branch c2.png2
[3[3[3]]] = [6,3][6,3*] = [3[3]]CDel node c1.pngCDel 6.pngCDel node.pngCDel 3s.pngCDel node.png = CDel node c1.pngCDel split1.pngCDel branch c1.png6
[1[3,3[3]]] = [3,3,6][3,3,6,1+] = [3,3[3]]CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png = CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel branch c3.png2
[(3,3)[3[3,3]]] = [6,3,3][6,(3,3)*] = [3[3,3]]CDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png = CDel node c1.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c1.png24
[1[∞]2] = [4,4][4,1+,4] = [∞]2 = [∞,2,∞]CDel node c1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node c2.png = CDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel branch c1-2.pngCDel labelinfin.png2
[2[∞]2] = [4,4][1+,4,4,1+] = [(4,4,2*)] = [∞]2CDel node h0.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node h0.png = CDel labelinfin.pngCDel branch c2.pngCDel 2.pngCDel branch c2.pngCDel labelinfin.png4
[4[∞]2] = [4,4][4,4*] = [∞]2CDel node c1.pngCDel 4.pngCDel node g.pngCDel 4sg.pngCDel node g.png = CDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel branch c1.pngCDel labelinfin.png8
[2[3[4]]] = [4,3,4][1+,4,3,4,1+] = [(4,3,4,2*)] = [3[4]]CDel node h0.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.png = CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png = CDel nodeab c1.pngCDel splitcross.pngCDel nodeab c2.png4
[3[∞]3] = [4,3,4][4,3*,4] = [∞]3 = [∞,2,∞,2,∞]CDel node c1.pngCDel 4.pngCDel node.pngCDel 3s.pngCDel node.pngCDel 4.pngCDel node c2.png = CDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel labelinfin.pngCDel branch c1-2.png6
[(3,3)[∞]3] = [4,31,1][4,(31,1)*] = [∞]3CDel node c1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.png24
[(4,3)[∞]3] = [4,3,4][4,(3,4)*] = [∞]3CDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.png = CDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.png48
[(3,3)[∞]4] = [4,3,3,4][4,(3,3)*,4] = [∞]4CDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel 4.pngCDel node c2.png = CDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel labelinfin.pngCDel branch c1-2.pngCDel 2.pngCDel labelinfin.pngCDel branch c1-2.png24
[(4,3,3)[∞]4] = [4,3,3,4][4,(3,3,4)*] = [∞]4CDel node c1.pngCDel 4.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.png = CDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.pngCDel 2.pngCDel labelinfin.pngCDel branch c1.png384

Looking at generators, the double symmetry is seen as adding a new operator that maps symmetric positions in the Coxeter diagram, making some original generators redundant. For 3D space groups, and 4D point groups, Coxeter defines an index two subgroup of [[X]], [[X]+], which he defines as the product of the original generators of [X] by the doubling generator. This looks similar to [[X]]+, which is the chiral subgroup of [[X]]. So for example the 3D space groups [[4,3,4]]+ (I432, 211) and [[4,3,4]+] (Pm3n, 223) are distinct subgroups of [[4,3,4]] (Im3m, 229).

Rank one groups

In one dimension, the bilateral group [ ] represents a single mirror symmetry, abstract Dih1 or Z2, symmetry order 2. It is represented as a Coxeter–Dynkin diagram with a single node, CDel node.png. The identity group is the direct subgroup [ ]+, Z1, symmetry order 1. The + superscript simply implies that alternate mirror reflections are ignored, leaving the identity group in this simplest case. Coxeter used a single open node to represent an alternation, CDel node h2.png.

GroupCoxeter notation Coxeter diagram OrderDescription
C1[ ]+CDel node h2.png1Identity
D2[ ]CDel node.png2Reflection group

Rank two groups

A regular hexagon, with markings on edges and vertices has 8 symmetries: [6], [3], [2], [1], [6] , [3] , [2] , [1] , with [3] and [1] existing in two forms, depending whether the mirrors are on the edges or vertices. Regular hexagon symmetries2.png
A regular hexagon, with markings on edges and vertices has 8 symmetries: [6], [3], [2], [1], [6] , [3] , [2] , [1] , with [3] and [1] existing in two forms, depending whether the mirrors are on the edges or vertices.

In two dimensions, the rectangular group [2], abstract D22 or D4, also can be represented as a direct product [ ]×[ ], being the product of two bilateral groups, represents two orthogonal mirrors, with Coxeter diagram, CDel node.pngCDel 2.pngCDel node.png, with order 4. The 2 in [2] comes from linearization of the orthogonal subgraphs in the Coxeter diagram, as CDel node.pngCDel 2x.pngCDel node.png with explicit branch order 2. The rhombic group, [2]+ (CDel node h2.pngCDel 2x.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png), half of the rectangular group, the point reflection symmetry, Z2, order 2.

Coxeter notation to allow a 1 place-holder for lower rank groups, so [1] is the same as [ ], and [1+] or [1]+ is the same as [ ]+ and Coxeter diagram CDel node h2.png.

The full p-gonal group [p], abstract dihedral group D2p, (nonabelian for p>2), of order 2p, is generated by two mirrors at angle π/p, represented by Coxeter diagram CDel node.pngCDel p.pngCDel node.png. The p-gonal subgroup [p]+, cyclic group Zp, of order p, generated by a rotation angle of π/p.

Coxeter notation uses double-bracking to represent an automorphic doubling of symmetry by adding a bisecting mirror to the fundamental domain. For example, [[p]] adds a bisecting mirror to [p], and is isomorphic to [2p].

In the limit, going down to one dimensions, the full apeirogonal group is obtained when the angle goes to zero, so [∞], abstractly the infinite dihedral group D, represents two parallel mirrors and has a Coxeter diagram CDel node.pngCDel infin.pngCDel node.png. The apeirogonal group [∞]+, CDel node h2.pngCDel infin.pngCDel node h2.png, abstractly the infinite cyclic group Z, isomorphic to the additive group of the integers, is generated by a single nonzero translation.

In the hyperbolic plane, there is a full pseudogonal group [iπ/λ], and pseudogonal subgroup [iπ/λ]+, CDel node h2.pngCDel ultra.pngCDel node h2.png. These groups exist in regular infinite-sided polygons, with edge length λ. The mirrors are all orthogonal to a single line.

Group Intl Orbifold Coxeter Coxeter diagram OrderDescription
Finite
Znnn•[n]+CDel node h2.pngCDel n.pngCDel node h2.pngnCyclic: n-fold rotations. Abstract group Zn, the group of integers under addition modulo n.
D2nnm*n•[n]CDel node.pngCDel n.pngCDel node.png2nDihedral: cyclic with reflections. Abstract group Dihn, the dihedral group.
Affine
Z∞•[∞]+CDel node h2.pngCDel infin.pngCDel node h2.pngCyclic: apeirogonal group . Abstract group Z, the group of integers under addition.
Dih∞m*∞•[∞]CDel node.pngCDel infin.pngCDel node.pngDihedral: parallel reflections. Abstract infinite dihedral group Dih.
Hyperbolic
Z[πi/λ]+CDel node h2.pngCDel ultra.pngCDel node h2.pngpseudogonal group
Dih[πi/λ]CDel node.pngCDel ultra.pngCDel node.pngfull pseudogonal group

Rank three groups

Point groups in 3 dimensions can be expressed in bracket notation related to the rank 3 Coxeter groups:

In three dimensions, the full orthorhombic group or orthorectangular [2,2], abstractly Z23, order 8, represents three orthogonal mirrors, (also represented by Coxeter diagram as three separate dots CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png). It can also can be represented as a direct product [ ]×[ ]×[ ], but the [2,2] expression allows subgroups to be defined:

First there is a "semidirect" subgroup, the orthorhombic group, [2,2+] (CDel node.pngCDel 2.pngCDel node h2.pngCDel 2x.pngCDel node h2.png or CDel node.pngCDel 2.pngCDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png), abstractly Z2×Z2, of order 4. When the + superscript is given inside of the brackets, it means reflections generated only from the adjacent mirrors (as defined by the Coxeter diagram, CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png) are alternated. In general, the branch orders neighboring the + node must be even. In this case [2,2+] and [2+,2] represent two isomorphic subgroups that are geometrically distinct. The other subgroups are the pararhombic group [2,2]+ (CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel 2x.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png), also order 4, and finally the central group [2+,2+] (CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h4.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png) of order 2.

Next there is the full ortho-p-gonal group, [2,p] (CDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.png), abstractly Z2×D2p, of order 4p, representing two mirrors at a dihedral angle π/p, and both are orthogonal to a third mirror. It is also represented by Coxeter diagram as CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.png.

The direct subgroup is called the para-p-gonal group, [2,p]+ (CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel p.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.pngCDel p.pngCDel node h2.png), abstractly D2p, of order 2p, and another subgroup is [2,p+] (CDel node.pngCDel 2.pngCDel node h2.pngCDel p.pngCDel node h2.png) abstractly Z2×Zp, also of order 2p.

The full gyro-p-gonal group, [2+,2p] (CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel 2x.pngCDel p.pngCDel node.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel p.pngCDel node.png), abstractly D4p, of order 4p. The gyro-p-gonal group, [2+,2p+] (CDel node h2.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel p.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h4.pngCDel 2x.pngCDel p.pngCDel node h2.png), abstractly Z2p, of order 2p is a subgroup of both [2+,2p] and [2,2p+].

The polyhedral groups are based on the symmetry of platonic solids: the tetrahedron, octahedron, cube, icosahedron, and dodecahedron, with Schläfli symbols {3,3}, {3,4}, {4,3}, {3,5}, and {5,3} respectively. The Coxeter groups for these are: [3,3] (CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png), [3,4] (CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png), [3,5] (CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png) called full tetrahedral symmetry, octahedral symmetry, and icosahedral symmetry, with orders of 24, 48, and 120.

Pyritohedral symmetry, [3+,4] is an index 5 subgroup of icosahedral symmetry, [5,3]. Pyritohedral in icosahedral symmetry.png
Pyritohedral symmetry, [3+,4] is an index 5 subgroup of icosahedral symmetry, [5,3].

In all these symmetries, alternate reflections can be removed producing the rotational tetrahedral [3,3]+(CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png), octahedral [3,4]+ (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 4.pngCDel node h2.png), and icosahedral [3,5]+ (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 5.pngCDel node h2.png) groups of order 12, 24, and 60. The octahedral group also has a unique index 2 subgroup called the pyritohedral symmetry group, [3+,4] (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 4.pngCDel node.png or CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel 4.pngCDel node.png), of order 12, with a mixture of rotational and reflectional symmetry. Pyritohedral symmetry is also an index 5 subgroup of icosahedral symmetry: CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 3.pngCDel node n2.png --> CDel 2 n0.pngCDel node n1.pngCDel 3 n0.pngCDel 4.pngCDel node h2.pngCDel 3 n1.pngCDel 3 n2.pngCDel node h2.png, with virtual mirror 1 across 0, {010}, and 3-fold rotation {12}.

The tetrahedral group, [3,3] (CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png), has a doubling [[3,3]] (which can be represented by colored nodes CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.png), mapping the first and last mirrors onto each other, and this produces the [3,4] (CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png or CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.png) group. The subgroup [3,4,1+] (CDel node.pngCDel 3.pngCDel node.pngCDel 2c.pngCDel 4.pngCDel 2c.pngCDel node h2.png or CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png) is the same as [3,3], and [3+,4,1+] (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2c.pngCDel 4.pngCDel 2c.pngCDel node h2.png or CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 4.pngCDel node h0.png) is the same as [3,3]+.

Affine

In the Euclidean plane there's 3 fundamental reflective groups generated by 3 mirrors, represented by Coxeter diagrams CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png, CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png, and CDel node.pngCDel split1.pngCDel branch.png, and are given Coxeter notation as [4,4], [6,3], and [(3,3,3)]. The parentheses of the last group imply the diagram cycle, and also has a shorthand notation [3[3]].

[[4,4]] as a doubling of the [4,4] group produced the same symmetry rotated π/4 from the original set of mirrors.

Direct subgroups of rotational symmetry are: [4,4]+, [6,3]+, and [(3,3,3)]+. [4+,4] and [6,3+] are semidirect subgroups.

Semiaffine (frieze groups)
IUC Orb. Geo Sch. Coxeter
p1∞∞p1C[∞] = [∞,1]+ = [∞+,2,1+]CDel node h2.pngCDel infin.pngCDel node h2.png = CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2.pngCDel node h0.png
p1m1*∞∞p1C∞v[∞] = [∞,1] = [∞,2,1+]CDel node.pngCDel infin.pngCDel node.png = CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h0.png
p11g∞×p.g1S2∞[∞+,2+]CDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
p11m∞*p. 1C∞h[∞+,2]CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2.pngCDel node.png
p222∞p2D[∞,2]+CDel node h2.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.png
p2mg2*∞p2gD∞d[∞,2+]CDel node.pngCDel infin.pngCDel node h2.pngCDel 2x.pngCDel node h2.png
p2mm*22∞p2D∞h[∞,2]CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.png
Affine (Wallpaper groups)
IUC Orb. Geo.Coxeter
p22222p2[4,1+,4]+CDel labelh.pngCDel node.pngCDel split1-44.pngCDel branch h2h2.pngCDel label2.png
p2gg22×pg2g[4+,4+]CDel node h2.pngCDel 4.pngCDel node h4.pngCDel 4.pngCDel node h2.png
p2mm*2222p2[4,1+,4]CDel node.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node.png
CDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
c2mm2*22c2[[4+,4+]]CDel node h4b.pngCDel split1-44.pngCDel nodes h2h2.png
p4442p4[4,4]+CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node h2.png
p4gm4*2pg4[4+,4]CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node.png
p4mm*442p4[4,4]CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
p3333p3[1+,6,3+] = [3[3]]+CDel node h0.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png = CDel branch h2h2.pngCDel split2.pngCDel node h2.png
p3m1*333p3[1+,6,3] = [3[3]]CDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png = CDel branch.pngCDel split2.pngCDel node.png
p31m3*3h3[6,3+] = [3[3[3]]+]CDel node.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png
p6632p6[6,3]+ = [3[3[3]]]+CDel node h2.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png
p6mm*632p6[6,3] = [3[3[3]]]CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png

Given in Coxeter notation (orbifold notation), some low index affine subgroups are:

Reflective
group
Reflective
subgroup
Mixed
subgroup
Rotation
subgroup
Improper rotation/
translation
Commutator
subgroup
[4,4], (*442)[1+,4,4], (*442)
[4,1+,4], (*2222)
[1+,4,4,1+], (*2222)
[4+,4], (4*2)
[(4,4,2+)], (2*22)
[1+,4,1+,4], (2*22)
[4,4]+, (442)
[1+,4,4+], (442)
[1+,4,1+4,1+], (2222)
[4+,4+], (22×)[4+,4+]+, (2222)
[6,3], (*632)[1+,6,3] = [3[3]], (*333)[3+,6], (3*3)[6,3]+, (632)
[1+,6,3+], (333)
[1+,6,3+], (333)

Rank four groups

Polychoral group tree.png
Hasse diagram subgroup relations (partial!)

Point groups

Rank four groups defined the 4-dimensional point groups:

Finite groups
[ ]: CDel node.png
SymbolOrder
[1]+1.1
[1] = [ ]2.1
[2]: CDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[1+,2]+1.1
[2]+2.1
[2]4.1
[2,2]: CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[2+,2+]+
= [(2+,2+,2+)]
1.1
[2+,2+]2.1
[2,2]+4.1
[2+,2]4.1
[2,2]8.1
[2,2,2]: CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[(2+,2+,2+,2+)]
= [2+,2+,2+]+
1.1
[2+,2+,2+]2.1
[2+,2,2+]4.1
[(2,2)+,2+]4
[[2+,2+,2+]]4
[2,2,2]+8
[2+,2,2]8.1
[(2,2)+,2]8
[[2+,2,2+]]8.1
[2,2,2]16.1
[[2,2,2]]+16
[[2,2+,2]]16
[[2,2,2]]32
[p]: CDel node.pngCDel p.pngCDel node.png
SymbolOrder
[p]+p
[p]2p
[p,2]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[p,2]+2p
[p,2]4p
[2p,2+]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2x.pngCDel node.png
SymbolOrder
[2p,2+]4p
[2p+,2+]2p
[p,2,2]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[p+,2,2+]2p
[(p,2)+,2+]2p
[p,2,2]+4p
[p,2,2+]4p
[p+,2,2]4p
[(p,2)+,2]4p
[p,2,2]8p
[2p,2+,2]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[2p+,2+,2+]+p
[2p+,2+,2+]2p
[2p+,2+,2]4p
[2p+,(2,2)+]4p
[2p,(2,2)+]8p
[2p,2+,2]8p
[p,2,q]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel q.pngCDel node.png
SymbolOrder
[p+,2,q+]pq
[p,2,q]+2pq
[p+,2,q]2pq
[p,2,q]4pq
[(p,2)+,2q]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel q.pngCDel node.png
SymbolOrder
[(p,2)+,2q+]2pq
[(p,2)+,2q]4pq
[2p,2,2q]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel q.pngCDel node.png
SymbolOrder
[2p+,2+,2q+]+=
[(2p+,2+,2q+,2+)]
pq
[2p+,2+,2q+]2pq
[2p,2+,2q+]4pq
[((2p,2)+,(2q,2)+)]4pq
[2p,2+,2q]8pq
[[p,2,p]]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.png
SymbolOrder
[[p+,2,p+]]2p2
[[p,2,p]]+4p2
[[p,2,p]+]4p2
[[p,2,p]]8p2
[[2p,2,2p]]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.png
SymbolOrder
[[(2p+,2+,2p+,2+)]]2p2
[[2p+,2+,2p+]]4p2
[[((2p,2)+,(2p,2)+)]]8p2
[[2p,2+,2p]]16p2
[3,3,2]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[(3,3)Δ,2,1+]
≅ [2,2]+
4
[(3,3)Δ,2]
≅ [2,(2,2)+]
8
[(3,3),2,1+]
≅ [4,2+]
8
[(3,3)+,2,1+]
= [3,3]+
12.5
[(3,3),2]
≅ [2,4,2+]
16
[3,3,2,1+]
= [3,3]
24
[(3,3)+,2]24.10
[3,3,2]+24.10
[3,3,2]48.36
[4,3,2]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[1+,4,3+,2,1+]
= [3,3]+
12
[3+,4,2+]24
[(3,4)+,2+]24
[1+,4,3+,2]
= [(3,3)+,2]
24.10
[3+,4,2,1+]
= [3+,4]
24.10
[(4,3)+,2,1+]
= [4,3]+
24.15
[1+,4,3,2,1+]
= [3,3]
24
[1+,4,(3,2)+]
= [3,3,2]+
24
[3,4,2+]48
[4,3+,2]48.22
[4,(3,2)+]48
[(4,3)+,2]48.36
[1+,4,3,2]
= [3,3,2]
48.36
[4,3,2,1+]
= [4,3]
48.36
[4,3,2]+48.36
[4,3,2]96.5
[5,3,2]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[(5,3)+,2,1+]
= [5,3]+
60.13
[5,3,2,1+]
= [5,3]
120.2
[(5,3)+,2]120.2
[5,3,2]+120.2
[5,3,2]240 (nc)
[31,1,1]: CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
SymbolOrder
[31,1,1]Δ
≅[[4,2+,4]]+
32
[31,1,1]64
[31,1,1]+96.1
[31,1,1]192.2
<[3,31,1]>
= [4,3,3]
384.1
[3[31,1,1]]
= [3,4,3]
1152.1
[3,3,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
SymbolOrder
[3,3,3]+60.13
[3,3,3]120.1
[[3,3,3]]+120.2
[[3,3,3]+]120.1
[[3,3,3]]240.1
[4,3,3]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
SymbolOrder
[1+,4,(3,3)Δ]
= [31,1,1]Δ
≅[[4,2+,4]]+
32
[4,(3,3)Δ]
= [2+,4[2,2,2]+]
≅[[4,2+,4]]
64
[1+,4,(3,3)]
= [31,1,1]
64
[1+,4,(3,3)+]
= [31,1,1]+
96.1
[4,(3,3)]
≅ [[4,2,4]]
128
[1+,4,3,3]
= [31,1,1]
192.2
[4,(3,3)+]192.1
[4,3,3]+192.3
[4,3,3]384.1
[3,4,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
SymbolOrder
[3+,4,3+]288.1
[3,4,3]
= [4,3,3]
384.1
[3,4,3]+576.2
[3+,4,3]576.1
[[3+,4,3+]]576 (nc)
[3,4,3]1152.1
[[3,4,3]]+1152 (nc)
[[3,4,3]+]1152 (nc)
[[3,4,3]]2304 (nc)
[5,3,3]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
SymbolOrder
[5,3,3]+7200 (nc)
[5,3,3]14400 (nc)

Subgroups

Space groups

Rank four groups as 3-dimensional space groups
Triclinic (1-2)
CoxeterSpace group
[∞+,2,∞+,2,∞+](1) P1
Monoclinic (3-15)
CoxeterSpace group
[(∞,2,∞)+,2,∞+](3) P2
[∞+,2,∞+,2,∞](6) Pm
[(∞,2,∞)+,2,∞](10) P2/m
Orthorhombic (16-74)
CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
CoxeterSpace group
[∞,2,∞,2,∞]+(16) P222
[[∞,2,∞,2,∞]]+(23) I222
[∞+,2,∞,2,∞](25) Pmm2
[∞,2,∞,2,∞](47) Pmmm
[[∞,2,∞,2,∞]](71) Immm
[∞+,2,∞+,2,∞+]
[∞,2,∞,2+,∞]
[∞,2+,∞,2+,∞]
Tetragonal (75-142)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
CoxeterSpace group
[(4,4)+,2,∞+](75) P4
[2+[(4,4)+,2,∞+]](79) I4
[(4,4)+,2,∞](83) P4/m
[2+[(4,4)+,2,∞]](87) I4/m
[4,4,2,∞]+(89) P422
[2+[4,4,2,∞]]+(97) I422
[4,4,2,∞+](99) P4mm
[4,4,2,∞](123) P4/mmm
[2+[4,4,2,∞]](139) I4/mmm
[4,(4,2)+,∞](140) I4/mcm
[4,4,2+,∞]
[(4,4)+,2+,∞]
[4,4,2+,∞+]
[(4,4)+,2+,∞+]
[4+,4+,2+,∞]
[4,4+,2,∞]
[4,4+,2+,∞]
[((4,2+,4)),2,∞]
[4,4+,2,∞+]
[4,4+,2+,∞+]
[((4,2+,4)),2,∞+]
Trigonal (143-167), rhombohedral
CoxeterSpace group
Hexagonal (168-194)
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
[(6,3)+,2,∞+](168) P6
[(6,3)+,2,∞](175) P6/m
[6,3,2,∞]+(177) P622
[6,3,2,∞+](183) P6mm
[6,3,2,∞](191) P6/mmm
[(3[3])+,2,∞+]
[3[3],2,∞]
[6,3+,2,∞]
[6,3+,2,∞+]
[3[3],2,∞]+
[3[3],2,∞+]
[(3[3])+,2,∞]
Cubic (195-230)
GroupCoxeterSpace groupIndex
[[4,3,4]][[4,3,4]](229) Im3m1
[[4,3,4]]+(211) I4322
[[4,3,4]+](223) Pm3n2
[[4,3+,4]](204) I32
[[(4,3,4,2+)]](217) I43m2
[[4,3+,4]]+(197) I234
[[4,3,4]+]+(208) P42324
[[4,3+,4)]+](201) Pn434
[[(4,3,4,2+)]+](218) P43n4
[4,3,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[4,3,4](221) Pm3m2
[4,3,4]+(207) P4324
[4,3+,4](200) Pm34
[4,(3,4)+](226) Fm3c4
[(4,3,4,2+)](215) P43m4
[[{4,(3}+,4)+]](228) Fd3c4
[4,3+,4]+(195) P238
[{4,(3}+,4)+](219) F43c8
[4,31,1]
CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
[4,31,1](225) Fm3m4
[4,(31,1)+](202) Fm38
[4,31,1]+(209) F4328
[[3[4]]]
CDel branch.pngCDel 3ab.pngCDel branch.png
[(4+,2+)[3[4]]](222) Pn3n2
[[3[4]]](227) Fd3m4
[[3[4]]]+(203) Fd38
[[3[4]]+](210) F41328
[3[4]]
CDel branch.pngCDel 3ab.pngCDel branch.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
[3[4]](216) F43m8
[3[4]]+(196) F2316

Line groups

Rank four groups also defined the 3-dimensional line groups:

Duoprismatic group

Rank four groups defined the 4-dimensional duoprismatic groups. In the limit as p and q go to infinity, they degenerate into 2 dimensions and the wallpaper groups.

Wallpaper groups

Rank four groups also defined some of the 2-dimensional wallpaper groups, as limiting cases of the four-dimensional duoprism groups:

Subgroups of [∞,2,∞], (*2222) can be expressed down to its index 16 commutator subgroup:

Complex reflections

Hasse diagram with all subgroup relations on rank 2 Shephard groups. Rank2 shephard subgroups3.png
Hasse diagram with all subgroup relations on rank 2 Shephard groups.

Coxeter notation has been extended to Complex space, Cn where nodes are unitary reflections of period 2 or greater. Nodes are labeled by an index, assumed to be 2 for ordinary real reflection if suppressed. Complex reflection groups are called Shephard groups rather than Coxeter groups, and can be used to construct complex polytopes.

In , a rank 1 Shephard group CDel pnode.png, order p, is represented as p[ ], [ ]p or ]p[. It has a single generator, representing a 2π/p radian rotation in the Complex plane: .

Coxeter writes the rank 2 complex group, p[q]r represents Coxeter diagram CDel pnode.pngCDel 3.pngCDel q.pngCDel 3.pngCDel rnode.png. The p and r should only be suppressed if both are 2, which is the real case [q]. The order of a rank 2 group p[q]r is . [9]

The rank 2 solutions that generate complex polygons are: p[4]2 (p is 2,3,4,...), 3[3]3, 3[6]2, 3[4]3, 4[3]4, 3[8]2, 4[6]2, 4[4]3, 3[5]3, 5[3]5, 3[10]2, 5[6]2, and 5[4]3 with Coxeter diagrams CDel pnode.pngCDel 4.pngCDel node.png, CDel 3node.pngCDel 3.pngCDel 3node.png, CDel 3node.pngCDel 6.pngCDel node.png, CDel 3node.pngCDel 4.pngCDel 3node.png, CDel 4node.pngCDel 3.pngCDel 4node.png, CDel 3node.pngCDel 8.pngCDel node.png, CDel 4node.pngCDel 6.pngCDel node.png, CDel 4node.pngCDel 4.pngCDel 3node.png, CDel 3node.pngCDel 5.pngCDel 3node.png, CDel 5node.pngCDel 3.pngCDel 5node.png, CDel 3node.pngCDel 10.pngCDel node.png, CDel 5node.pngCDel 6.pngCDel node.png, CDel 5node.pngCDel 4.pngCDel 3node.png.

Some subgroup relations among infinite Shephard groups Rank2 infinite shephard subgroups3.png
Some subgroup relations among infinite Shephard groups

Infinite groups are 3[12]2, 4[8]2, 6[6]2, 3[6]3, 6[4]3, 4[4]4, and 6[3]6 or CDel 3node.pngCDel 12.pngCDel node.png, CDel 4node.pngCDel 8.pngCDel node.png, CDel 6node.pngCDel 6.pngCDel node.png, CDel 3node.pngCDel 6.pngCDel 3node.png, CDel 6node.pngCDel 4.pngCDel 3node.png, CDel 4node.pngCDel 4.pngCDel 4node.png, CDel 6node.pngCDel 3.pngCDel 6node.png.

Index 2 subgroups exists by removing a real reflection: p[2q]2p[q]p. Also index r subgroups exist for 4 branches: p[4]rp[r]p.

For the infinite family p[4]2, for any p = 2, 3, 4,..., there are two subgroups: p[4]2 → [p], index p, while and p[4]2p[ ]×p[ ], index 2.

Computation with reflection matrices as symmetry generators

A Coxeter group, represented by Coxeter diagram CDel node n0.pngCDel p.pngCDel node n1.pngCDel q.pngCDel node n2.png, is given Coxeter notation [p,q] for the branch orders. Each node in the Coxeter diagram represents a mirror, by convention called ρi (and matrix Ri). The generators of this group [p,q] are reflections: ρ0, ρ1, and ρ2. Rotational subsymmetry is given as products of reflections: By convention, σ0,1 (and matrix S0,1) = ρ0ρ1 represents a rotation of angle π/p, and σ1,2 = ρ1ρ2 is a rotation of angle π/q, and σ0,2 = ρ0ρ2 represents a rotation of angle π/2.

[p,q]+, CDel node h2.pngCDel 3 n0.pngCDel 3 n1.pngCDel p.pngCDel node h2.pngCDel 3.pngCDel q.pngCDel 3 n1.pngCDel 3 n2.pngCDel node h2.png, is an index 2 subgroup represented by two rotation generators, each a products of two reflections: σ0,1, σ1,2, and representing rotations of π/p, and π/q angles respectively.

With one even branch, [p+,2q], CDel node h2.pngCDel 3 n0.pngCDel 3 n1.pngCDel p.pngCDel node h2.pngCDel 2x.pngCDel q.pngCDel node n2.png or CDel node h2.pngCDel 3 n0.pngCDel 3 n1.pngCDel p.pngCDel node h2.pngCDel 2c.pngCDel 2x.pngCDel q.pngCDel node n2.png, is another subgroup of index 2, represented by rotation generator σ0,1, and reflectional ρ2.

With even branches, [2p+,2q+], CDel node h2.pngCDel 3 n0.pngCDel 3 n1.pngCDel 3 n2.pngCDel 2x.pngCDel p.pngCDel node h4.pngCDel 2x.pngCDel q.pngCDel node h2.png, is a subgroup of index 4 with two generators, constructed as a product of all three reflection matrices: By convention as: ψ0,1,2 and ψ1,2,0, which are rotary reflections, representing a reflection and rotation or reflection.

In the case of affine Coxeter groups like CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 4.pngCDel node n2.png, or CDel node n0.pngCDel infin.pngCDel node n1.png, one mirror, usually the last, is translated off the origin. A translation generator τ0,1 (and matrix T0,1) is constructed as the product of two (or an even number of) reflections, including the affine reflection. A transreflection (reflection plus a translation) can be the product of an odd number of reflections φ0,1,2 (and matrix V0,1,2), like the index 4 subgroup CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 4.pngCDel node n2.png: [4+,4+] = CDel node h2.pngCDel 3 n0.pngCDel 3 n1.pngCDel 3 n2.pngCDel 4.pngCDel node h4.pngCDel 4.pngCDel node h2.png.

Another composite generator, by convention as ζ (and matrix Z), represents the inversion, mapping a point to its inverse. For [4,3] and [5,3], ζ = (ρ0ρ1ρ2)h/2, where h is 6 and 10 respectively, the Coxeter number for each family. For 3D Coxeter group [p,q] (CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png), this subgroup is a rotary reflection [2+,h+].

Coxeter groups are categorized by their rank, being the number of nodes in its Coxeter-Dynkin diagram. The structure of the groups are also given with their abstract group types: In this article, the abstract dihedral groups are represented as Dihn, and cyclic groups are represented by Zn, with Dih1=Z2.

Rank 2

Dihedral groups Cyclic groups
Dihedral symmetry domains 2.png
[2]
Cyclic symmetry 2.png
[2]+
Dihedral symmetry domains 3.png
[3]
Cyclic symmetry 3.png
[3]+
Dihedral symmetry domains 4.png
[4]
Cyclic symmetry 4.png
[4]+
Dihedral symmetry domains 6.png
[6]
Cyclic symmetry 6.png
[6]+

Example, in 2D, the Coxeter group [p] (CDel node.pngCDel p.pngCDel node.png) is represented by two reflection matrices R0 and R1, The cyclic symmetry [p]+ (CDel node h2.pngCDel p.pngCDel node h2.png) is represented by rotation generator of matrix S0,1.

[p], CDel node n0.pngCDel p.pngCDel node n1.png
ReflectionsRotation
NameR0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel p.pngCDel node h2.png
Order22p
Matrix

[2], CDel node n0.pngCDel 2.pngCDel node n1.png
ReflectionsRotation
NameR0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png
Order222
Matrix

[3], CDel node n0.pngCDel 3.pngCDel node n1.png
ReflectionsRotation
NameR0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel 3.pngCDel node h2.png
Order223
Matrix

[4], CDel node n0.pngCDel 4.pngCDel node n1.png
ReflectionsRotation
NameR0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel 4.pngCDel node h2.png
Order224
Matrix

[6], CDel node n0.pngCDel 6.pngCDel node n1.png
ReflectionsRotation
NameR0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel 6.pngCDel node h2.png
Order226
Matrix

[8], CDel node n0.pngCDel 8.pngCDel node n1.png
ReflectionsRotation
NameR0
CDel node n0.png
R1
CDel node n1.png
S0,1=R0×R1
CDel node h2.pngCDel 8.pngCDel node h2.png
Order228
Matrix

Rank 3

The finite rank 3 Coxeter groups are [1,p], [2,p], [3,3], [3,4], and [3,5].

To reflect a point through a plane (which goes through the origin), one can use , where is the 3×3 identity matrix and is the three-dimensional unit vector for the vector normal of the plane. If the L2 norm of and is unity, the transformation matrix can be expressed as:

[p,2]

Example fundamental domains, [5,2], as spherical triangles Spherical decagonal bipyramid.svg
Example fundamental domains, [5,2], as spherical triangles

The reducible 3-dimensional finite reflective group is dihedral symmetry, [p,2], order 4p, CDel node n0.pngCDel p.pngCDel node n1.pngCDel 2.pngCDel node n2.png. The reflection generators are matrices R0, R1, R2. R02=R12=R22=(R0×R1)3=(R1×R2)3=(R0×R2)2=Identity. [p,2]+ (CDel node h2.pngCDel p.pngCDel node h2.pngCDel 2x.pngCDel node h2.png) is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. An order p rotoreflection is generated by V0,1,2, the product of all 3 reflections.

[p,2], CDel node n0.pngCDel p.pngCDel node n1.pngCDel 2.pngCDel node n2.png
ReflectionsRotationRotoreflection
NameR0R1R2S0,1S1,2S0,2V0,1,2
GroupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node h2.pngCDel p.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png
Order222p22p
Matrix

[3,3]

reflection lines for [3,3] = Sphere symmetry group td.png
reflection lines for [3,3] = CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png

The simplest irreducible 3-dimensional finite reflective group is tetrahedral symmetry, [3,3], order 24, CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 3.pngCDel node n2.png. The reflection generators, from a D3=A3 construction, are matrices R0, R1, R2. R02=R12=R22=(R0×R1)3=(R1×R2)3=(R0×R2)2=Identity. [3,3]+ (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. A trionic subgroup, isomorphic to [2+,4], order 8, is generated by S0,2 and R1. An order 4 rotoreflection is generated by V0,1,2, the product of all 3 reflections.

[3,3], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 3.pngCDel node n2.png
ReflectionsRotationsRotoreflection
NameR0R1R2S0,1S1,2S0,2V0,1,2
NameCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png
Order222324
Matrix

(0,1,−1)n(1,−1,0)n(0,1,1)n(1,1,1)axis(1,1,−1)axis(1,0,0)axis

[4,3]

Reflection lines for [4,3] = Sphere symmetry group oh.png
Reflection lines for [4,3] = CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.png

Another irreducible 3-dimensional finite reflective group is octahedral symmetry, [4,3], order 48, CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.png. The reflection generators matrices are R0, R1, R2. R02=R12=R22=(R0×R1)4=(R1×R2)3=(R0×R2)2=Identity. Chiral octahedral symmetry, [4,3]+, (CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. Pyritohedral symmetry [4,3+], (CDel node n0.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by reflection R0 and rotation S1,2. A 6-fold rotoreflection is generated by V0,1,2, the product of all 3 reflections.

[4,3], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.png
ReflectionsRotationsRotoreflection
NameR0R1R2S0,1S1,2S0,2V0,1,2
GroupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node h2.pngCDel 4.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png
Order2224326
Matrix

(0,0,1)n(0,1,−1)n(1,−1,0)n(1,0,0)axis(1,1,1)axis(1,−1,0)axis

[5,3]

Reflection lines for [5,3] = Sphere symmetry group ih.png
Reflection lines for [5,3] = CDel node c2.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c2.png

A final irreducible 3-dimensional finite reflective group is icosahedral symmetry, [5,3], order 120, CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 3.pngCDel node n2.png. The reflection generators matrices are R0, R1, R2. R02=R12=R22=(R0×R1)5=(R1×R2)3=(R0×R2)2=Identity. [5,3]+ (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. A 10-fold rotoreflection is generated by V0,1,2, the product of all 3 reflections.

[5,3], CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 3.pngCDel node n2.png
ReflectionsRotationsRotoreflection
NameR0R1R2S0,1S1,2S0,2V0,1,2
GroupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node h2.pngCDel 5.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel 2c.pngCDel 3.pngCDel node h2.png
Order22253210
Matrix
(1,0,0)n(φ,1,φ−1)n(0,1,0)n(φ,1,0)axis(1,1,1)axis(1,0,0)axis

Rank 4

There are 4 irreducible Coxeter groups in 4 dimensions: [3,3,3], [4,3,3], [31,1,1], [3,4,4], [5,3,3], as well as an infinite family of duoprismatic groups [p,2,q].

[p,2,q]

The duprismatic group, [p,2,q], has order 4pq.

[p,2,q], CDel node n0.pngCDel p.pngCDel node n1.pngCDel 2.pngCDel node n2.pngCDel q.pngCDel node n3.png
Reflections
NameR0R1R2R3
Group elementCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.png
Order2222
Matrix

[[p,2,p]]

The duoprismatic group can double in order, to 8p2, with a 2-fold rotation between the two planes.

[[p,2,p]], CDel node n0.pngCDel p.pngCDel node n1.pngCDel 2.pngCDel node n2.pngCDel p.pngCDel node n3.png
RotationReflections
NameTR0R1R2=TR1TR3=TR0T
ElementCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.png
Order222
Matrix

[3,3,3]

Hypertetrahedral symmetry, [3,3,3], order 120, is easiest to represent with 4 mirrors in 5-dimensions, as a subgroup of [4,3,3,3].

[3,3,3], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
ReflectionsRotationsRotoreflectionsDouble rotation
NameR0R1R2R3S0,1S1,2S2,3S0,2S1,3S2,3V0,1,2V0,1,3W0,1,2,3
Element groupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel 4.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel node.pngCDel label1.pngCDel label0.pngCDel branch h4h4.pngCDel 3ab.pngCDel branch h4h4.png
Order222232465
Matrix

(0,0,0,1,-1)n(0,0,1,−1,0)n(0,1,−1,0,0)n(1,−1,0,0,0)n
[[3,3,3]]

The extended group [[3,3,3]], order 240, is doubled by a 2-fold rotation matrix T, here reversing coordinate order and sign: There are 3 generators {T, R0, R1}. Since T is self-reciprocal R3=TR0T, and R2=TR1T.

[[3,3,3]], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
RotationReflections
NameTR0R1TR1T=R2TR0T=R3
Element groupCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.png
Order22222
Matrix

(0,0,0,1,-1)n(0,0,1,−1,0)n(0,1,−1,0,0)n(1,−1,0,0,0)n

[4,3,3]

A irreducible 4-dimensional finite reflective group is hyperoctahedral group (or hexadecachoric group (for 16-cell), B4=[4,3,3], order 384, CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png. The reflection generators matrices are R0, R1, R2, R3. R02=R12=R22=R32=(R0×R1)4=(R1×R2)3=(R2×R3)3=(R0×R2)2=(R1×R3)2=(R0×R3)2=Identity.

Chiral hyperoctahedral symmetry, [4,3,3]+, (CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 3 of 6 rotations: S0,1, S1,2, S2,3, S0,2, S1,3, and S0,3. Hyperpyritohedral symmetry [4,(3,3)+], (CDel node n0.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by reflection R0 and rotations S1,2 and S2,3. An 8-fold double rotation is generated by W0,1,2,3, the product of all 4 reflections.

[4,3,3], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
ReflectionsRotationsRotoreflectionDouble rotation
NameR0R1R2R3S0,1S1,2S2,3S0,2S1,3S0,3V1,2,3V0,1,3V0,1,2V0,2,3W0,1,2,3
GroupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.pngCDel node h2.pngCDel 4.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel 4.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel node.pngCDel node h2.pngCDel 8.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
Order2222432468
Matrix

(0,0,0,1)n(0,0,1,−1)n(0,1,−1,0)n(1,−1,0,0)n
[3,31,1]

A half group of [4,3,3] is [3,31,1], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel split1.pngCDel nodes.pngCDel 2 n2.pngCDel 2b n3.png, order 192. It shares 3 generators with [4,3,3] group, but has two copies of an adjacent generator, one reflected across the removed mirror.

[3,31,1], CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
Reflections
NameR0R1R2R3
GroupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.png
Order2222
Matrix

(1,−1,0,0)n(0,1,−1,0)n(0,0,1,−1)n(0,0,1,1)n

[3,4,3]

A irreducible 4-dimensional finite reflective group is Icositetrachoric group (for 24-cell), F4=[3,4,3], order 1152, CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png. The reflection generators matrices are R0, R1, R2, R3. R02=R12=R22=R32=(R0×R1)3=(R1×R2)4=(R2×R3)3=(R0×R2)2=(R1×R3)2=(R0×R3)2=Identity.

Chiral icositetrachoric symmetry, [3,4,3]+, (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 3 of 6 rotations: S0,1, S1,2, S2,3, S0,2, S1,3, and S0,3. Ionic diminished [3,4,3+] group, (CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by reflection R0 and rotations S1,2 and S2,3. A 12-fold double rotation is generated by W0,1,2,3, the product of all 4 reflections.

[3,4,3], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png
ReflectionsRotations
NameR0R1R2R3S0,1S1,2S2,3S0,2S1,3S0,3
Element groupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.pngCDel node h2.pngCDel 4.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.png
Order22223432
Matrix

(1,−1,0,0)n(0,1,−1,0)n(0,0,1,0)n(−1,−1,−1,−1)n
[3,4,3], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png
RotoreflectionDouble rotation
NameV1,2,3V0,1,3V0,1,2V0,2,3W0,1,2,3
Element groupCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel node.pngCDel node h2.pngCDel 12.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
Order612
Matrix

[[3,4,3]]

The group [[3,4,3]] extends [3,4,3] by a 2-fold rotation, T, doubling order to 2304.

[[3,4,3]], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 4.pngCDel node n2.pngCDel 3.pngCDel node n3.png
RotationReflections
NameTR0R1R2 = TR1TR3 = TR0T
Element groupCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.png
Order22222
Matrix

(1,−1,0,0)n(0,1,−1,0)n(0,0,1,0)n(−1,−1,−1,−1)n

[5,3,3]

Stereographic projections
Coxeter 533 order-5 gyration axes.png
[5,3,3]+ 72 order-5 gyrations
Coxeter 533 order-3 gyration axes.png
[5,3,3]+ 200 order-3 gyrations
Coxeter 533 order-2 gyration axes.png
[5,3,3]+ 450 order-2 gyrations
Coxeter 533 all gyration axes.png
[5,3,3]+ all gyrations

The hyper-icosahedral symmetry, [5,3,3], order 14400, CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png. The reflection generators matrices are R0, R1, R2, R3. R02=R12=R22=R32=(R0×R1)5=(R1×R2)3=(R2×R3)3=(R0×R2)2=(R0×R3)2=(R1×R3)2=Identity. [5,3,3]+ (CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png) is generated by 3 rotations: S0,1 = R0×R1, S1,2 = R1×R2, S2,3 = R2×R3, etc.

[5,3,3], CDel node n0.pngCDel 5.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Reflections
NameR0R1R2R3
Element groupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.png
Order2222
Matrix
(1,0,0,0)n(φ,1,φ−1,0)n(0,1,0,0)n(0,−1,φ,1−φ)n

Rank 8

[34,2,1]

The E8 Coxeter group, [34,2,1], CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png, has 8 mirror nodes, order 696729600 (192x10!). E7 and E6, [33,2,1], CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png, and [32,2,1], CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png can be constructed by ignoring the first mirror or the first two mirrors respectively.

E8=[34,2,1], CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Reflections
NameR0R1R2R3R4R5R6R7
Element groupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.pngCDel node n4.pngCDel node n5.pngCDel node n6.pngCDel node n7.png
Order22222222
Matrix
(1,-1,0,0,0,0,0,0)n(0,1,-1,0,0,0,0,0)n(0,0,1,-1,0,0,0,0)n(0,0,0,1,-1,0,0,0)n(0,0,0,0,1,-1,0,0)n(0,0,0,0,0,1,-1,0)n(0,0,0,0,0,1,1,0)n(1,1,1,1,1,1,1,1)n

Affine rank 2

Affine matrices are represented by adding an extra row and column, the last row being zero except last entry 1. The last column represents a translation vector.

[∞]

The affine group [∞], CDel node n0.pngCDel infin.pngCDel node n1.png, can be given by two reflection matrices, x=0 and x=1.

[∞], CDel node n0.pngCDel infin.pngCDel node n1.png
ReflectionsTranslation
NameR0R1S0,1
Element groupCDel node n0.pngCDel node n1.pngCDel node h2.pngCDel infin.pngCDel node h2.png
Order22
Matrix

Hyperplane x=0x=1

Affine rank 3

[4,4]

The affine group [4,4], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 4.pngCDel node n2.png, (p4m), can be given by three reflection matrices, reflections across the x axis (y=0), a diagonal (x=y), and the affine reflection across the line (x=1). [4,4]+ (CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node h2.png) (p4) is generated by S0,1 S1,2, and S0,2. [4+,4+] (CDel node h2.pngCDel 4.pngCDel node h4.pngCDel 4.pngCDel node h2.png) (pgg) is generated by 2-fold rotation S0,2 and glide reflection (transreflection) V0,1,2. [4+,4] (CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 4.pngCDel node.png) (p4g) is generated by S0,1 and R3. The group [(4,4,2+)] (CDel node.pngCDel split1-44.pngCDel branch h2h2.pngCDel label2.png) (cmm), is generated by 2-fold rotation S1,3 and reflection R2.

[4,4], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 4.pngCDel node n2.png
ReflectionsRotationsGlides
NameR0R1R2S0,1S1,2S0,2V0,1,2V0,2,1
Element groupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node h2.pngCDel 4.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
Order22242∞ (2)
Matrix

Hyperplane y=0x=yx=1

[3,6]

The affine group [3,6], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 6.pngCDel node n2.png, (p6m), can be given by three reflection matrices, reflections across the x axis (y=0), line y=(√3/2)x, and vertical line x=1.

[3,6], CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 6.pngCDel node n2.png
ReflectionsRotationsGlides
NameR0R1R2S0,1S1,2S0,2V0,1,2V0,2,1
Element groupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 6.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
Order222362∞ (2)
Matrix

Hyperplane y=0y=(√3/2)xx=1

[3[3]]

The affine group [3[3]] can be constructed as a half group of CDel node n0.pngCDel 3.pngCDel node n1.pngCDel 6.pngCDel node h0.png. R2 is replaced by R'2 = R2×R1×R2, presented by the hyperplane: y+(√3/2)x=2. The fundamental domain is an equilateral triangle with edge length 2.

[3[3]], CDel node n0.pngCDel split1.pngCDel branch.pngCDel 2 n1.pngCDel 2b n2.png
ReflectionsRotationsGlides
NameR0R1R'2 = R2×R1×R2S0,1S1,2S0,2V0,1,2V0,2,1
Element groupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h2.png
Order2223∞ (2)
Matrix

Hyperplane y=0y=(√3/2)xy+(√3/2)x=2

Affine rank 4

[4,3,4]

[4,3,4] fundamental domain Eighth pyramidille cell.png
[4,3,4] fundamental domain

The affine group is [4,3,4] (CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 4.pngCDel node n3.png), can be given by four reflection matrices. Mirror R0 can be put on z=0 plane. Mirror R1 can be put on plane y=z. Mirror R2 can be put on x=y plane. Mirror R3 can be put on x=1 plane. [4,3,4]+ (CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 4.pngCDel node h2.png) is generated by S0,1, S1,2, and S2,3.

[4,3,4], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 4.pngCDel node n3.png
ReflectionsRotations Transflections Screw axis
NameR0R1R2R3S0,1S1,2S2,3S0,2S0,3S1,3T0,1,2T1,2,3U0,1,2,3
Element groupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.pngCDel node h2.pngCDel 4.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 4.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel 6.pngCDel node h4.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel infin.pngCDel node h4.pngCDel 2x.pngCDel node h4.pngCDel 6.pngCDel node h2.png
Order222243426∞ (3)
Matrix

Hyperplane z=0y=zx=yx=1
[[4,3,4]]

The extended group [[4,3,4]] doubles the group order, adding with a 2-fold rotation matrix T, with a fixed axis through points (1,1/2,0) and (1/2,1/2,1/2). The generators are {R0,R1,T}. R2 = T×R1×T and R3 = T×R0×T.

[[4,3,4]], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 4.pngCDel node n3.png
RotationReflections
NameTR0R1R2 = T×R1×TR3 = T×R0×T
Element groupCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.png
Order22222
Matrix

Hyperplane Point (1/2,1/2,1/2)
Axis (-1,0,1)
z=0y=zx=yx=1

[4,31,1]

[4,3 ] fundamental domain Triangular pyramidille cell1.png
[4,3 ] fundamental domain

The group [4,31,1] can be constructed from [4,3,4], by computing [4,3,4,1+], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 4.pngCDel node h0.png, as R'3=R3×R2×R3, with new R'3 as an image of R2 across R3.

[4,31,1], CDel node n0.pngCDel 4.pngCDel node n1.pngCDel split1.pngCDel nodes.pngCDel 2 n2.pngCDel 2b n3.png
ReflectionsRotations
NameR0R1R2R'3S0,1S1,2S1,3S0,2S0,3S2,3
Element groupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.png
Order22223332
Matrix

Hyperplane z=0y=zx=yx+y=2

[3[4]]

[3 ] fundamental domain Oblate tetrahedrille cell.png
[3 ] fundamental domain

The group [3[4]] can be constructed from [4,3,4], by removing first and last mirrors, [1+,4,3,4,1+], CDel node h0.pngCDel 4.pngCDel node n1.pngCDel 3.pngCDel node n2.pngCDel 4.pngCDel node h0.png, by R'1=R0×R1×R0 and R'3=R3×R2×R3.

[3[4]] CDel 2b n1.pngCDel 2 n0.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel 2 n3.pngCDel 2b n2.png
ReflectionsRotations
NameR'0R1R2R'3S0,1S1,2S1,3S0,2S0,3S2,3
Element groupCDel node n0.pngCDel node n1.pngCDel node n2.pngCDel node n3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel node h2.pngCDel 2x.pngCDel node h2.png
Order22223332
Matrix

Hyperplane y=-zy=zx=yx+y=2

Notes

  1. Johnson (2018), 11.6 Subgroups and extensions, p 255, halving subgroups
  2. 1 2 Johnson (2018), pp.231-236, and p 245 Table 11.4 Finite groups of isometries in 3-space
  3. Johnson (2018), 11.6 Subgroups and extensions, p 259, radical subgroup
  4. Johnson (2018), 11.6 Subgroups and extensions, p 258, trionic subgroups
  5. Conway, 2003, p.46, Table 4.2 Chiral groups II
  6. Coxeter and Moser, 1980, Sec 9.5 Commutator subgroup, p. 124–126
  7. Johnson, Norman W.; Weiss, Asia Ivić (1999). "Quaternionic modular groups". Linear Algebra and Its Applications. 295 (1–3): 159–189. doi: 10.1016/S0024-3795(99)00107-X .
  8. The Crystallographic Space groups in Geometric algebra, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF Archived 2020-10-20 at the Wayback Machine
  9. Coxeter, Regular Complex Polytopes, 9.7 Two-generator subgroups reflections. pp. 178–179

Related Research Articles

<span class="mw-page-title-main">Dihedral group</span> Group of symmetries of a regular polygon

In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry.

In geometry, an improper rotation is an isometry in Euclidean space that is a combination of a rotation about an axis and a reflection in a plane perpendicular to that axis. Reflection and inversion are each special case of improper rotation. Any improper rotation is an affine transformation and, in cases that keep the coordinate origin fixed, a linear transformation. It is used as a symmetry operation in the context of geometric symmetry, molecular symmetry and crystallography, where an object that is unchanged by a combination of rotation and reflection is said to have improper rotation symmetry.

In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935.

<span class="mw-page-title-main">Wallpaper group</span> Classification of a two-dimensional repetitive pattern

A wallpaper is a mathematical object covering a whole Euclidean plane by repeating a motif indefinitely, in manner that certain isometries keep the drawing unchanged. For each wallpaper there corresponds a group of congruent transformations, with function composition as the group operation. Thus, a wallpaper group is a mathematical classification of a two‑dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art, especially in textiles, tessellations, tiles and physical wallpaper.

<span class="mw-page-title-main">Point group</span> Group of geometric symmetries with at least one fixed point

In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d). Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules.

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.

<span class="mw-page-title-main">Icosahedral symmetry</span> 3D symmetry group

In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron and the rhombic triacontahedron.

<span class="mw-page-title-main">Octahedral symmetry</span> 3D symmetry group

A regular octahedron has 24 rotational symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual to an octahedron.

<span class="mw-page-title-main">Tetrahedral symmetry</span> 3D symmetry group

A regular tetrahedron has 12 rotational symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation.

<span class="mw-page-title-main">Wythoff symbol</span> Notation for tesselations

In geometry, the Wythoff symbol is a notation representing a Wythoff construction of a uniform polyhedron or plane tiling within a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra. Later the Coxeter diagram was developed to mark uniform polytopes and honeycombs in n-dimensional space within a fundamental simplex.

<span class="mw-page-title-main">Coxeter–Dynkin diagram</span> Pictorial representation of symmetry

In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing a Coxeter group or sometimes a uniform polytope constructed from the group.

In mathematics, a complex reflection group is a finite group acting on a finite-dimensional complex vector space that is generated by complex reflections: non-trivial elements that fix a complex hyperplane pointwise.

In geometry, a complex polytope is a generalization of a polytope in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one.

<span class="mw-page-title-main">Uniform 5-polytope</span> Five-dimensional geometric shape

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

<span class="mw-page-title-main">Regular map (graph theory)</span> Symmetric tessellation of a closed surface

In mathematics, a regular map is a symmetric tessellation of a closed surface. More precisely, a regular map is a decomposition of a two-dimensional manifold into topological disks such that every flag can be transformed into any other flag by a symmetry of the decomposition. Regular maps are, in a sense, topological generalizations of Platonic solids. The theory of maps and their classification is related to the theory of Riemann surfaces, hyperbolic geometry, and Galois theory. Regular maps are classified according to either: the genus and orientability of the supporting surface, the underlying graph, or the automorphism group.

<span class="mw-page-title-main">Goursat tetrahedron</span>

In geometry, a Goursat tetrahedron is a tetrahedral fundamental domain of a Wythoff construction. Each tetrahedral face represents a reflection hyperplane on 3-dimensional surfaces: the 3-sphere, Euclidean 3-space, and hyperbolic 3-space. Coxeter named them after Édouard Goursat who first looked into these domains. It is an extension of the theory of Schwarz triangles for Wythoff constructions on the sphere.

In geometry, uniform honeycombs in hyperbolic space are tessellations of convex uniform polyhedron cells. In 3-dimensional hyperbolic space there are 23 Coxeter group families of paracompact uniform honeycombs, generated as Wythoff constructions, and represented by ring permutations of the Coxeter diagrams for each family. These families can produce uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity, similar to the hyperbolic uniform tilings in 2-dimensions.

<span class="mw-page-title-main">Point groups in four dimensions</span>

In geometry, a point group in four dimensions is an isometry group in four dimensions that leaves the origin fixed, or correspondingly, an isometry group of a 3-sphere.

<span class="mw-page-title-main">Regular complex polygon</span> Polygons which have an accompanying imaginary dimension for each real dimension

In geometry, a regular complex polygon is a generalization of a regular polygon in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one. A regular polygon exists in 2 real dimensions, , while a complex polygon exists in two complex dimensions, , which can be given real representations in 4 dimensions, , which then must be projected down to 2 or 3 real dimensions to be visualized. A complex polygon is generalized as a complex polytope in .

References