Point groups in four dimensions

Last updated
A hierarchy of 4D polychoric point groups and some subgroups. Vertical positioning is grouped by order. Blue, green, and pink colors show reflectional, hybrid, and rotational groups. Polychoral group tree.png
A hierarchy of 4D polychoric point groups and some subgroups. Vertical positioning is grouped by order. Blue, green, and pink colors show reflectional, hybrid, and rotational groups.
Some 4D point groups in Conway's notation Polychoral group tree-conway.png
Some 4D point groups in Conway's notation

In geometry, a point group in four dimensions is an isometry group in four dimensions that leaves the origin fixed, or correspondingly, an isometry group of a 3-sphere.

Contents

History on four-dimensional groups

Isometries of 4D point symmetry

There are four basic isometries of 4-dimensional point symmetry: reflection symmetry, rotational symmetry, rotoreflection, and double rotation.

Notation for groups

Point groups in this article are given in Coxeter notation, which are based on Coxeter groups, with markups for extended groups and subgroups. [6] Coxeter notation has a direct correspondence the Coxeter diagram like [3,3,3], [4,3,3], [31,1,1], [3,4,3], [5,3,3], and [p,2,q]. These groups bound the 3-sphere into identical hyperspherical tetrahedral domains. The number of domains is the order of the group. The number of mirrors for an irreducible group is nh/2, where h is the Coxeter group's Coxeter number, n is the dimension (4). [7]

For cross-referencing, also given here are quaternion based notations by Patrick du Val (1964) [8] and John Conway (2003). [9] Conway's notation allows the order of the group to be computed as a product of elements with chiral polyhedral group orders: (T=12, O=24, I=60). In Conway's notation, a (±) prefix implies central inversion, and a suffix (.2) implies mirror symmetry. Similarly Du Val's notation has an asterisk (*) superscript for mirror symmetry.

Involution groups

There are five involutional groups: no symmetry [ ]+, reflection symmetry [ ], 2-fold rotational symmetry [2]+, 2-fold rotoreflection [2+,2+], and central point symmetry [2+,2+,2+] as a 2-fold double rotation.

Rank 4 Coxeter groups

A polychoric group is one of five symmetry groups of the 4-dimensional regular polytopes. There are also three polyhedral prismatic groups, and an infinite set of duoprismatic groups. Each group defined by a Goursat tetrahedron fundamental domain bounded by mirror planes. The dihedral angles between the mirrors determine order of dihedral symmetry. The Coxeter–Dynkin diagram is a graph where nodes represent mirror planes, and edges are called branches, and labeled by their dihedral angle order between the mirrors.

The term polychoron (plural polychora, adjective polychoric), from the Greek roots poly ("many") and choros ("room" or "space") and was advocated [10] by Norman Johnson and George Olshevsky in the context of uniform polychora (4-polytopes), and their related 4-dimensional symmetry groups. [11]

Orthogonal subgroups

B4 can be decomposed into 2 orthogonal groups, 4A1 and D4:

  1. CDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png = CDel node c1.pngCDel 2.pngCDel nodeab c1.pngCDel 2.pngCDel node c1.png (4 orthogonal mirrors)
  2. CDel node h0.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c4.png = CDel nodeab c2.pngCDel split2.pngCDel node c3.pngCDel 3.pngCDel node c4.png (12 mirrors)

F4 can be decomposed into 2 orthogonal D4 groups:

  1. CDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node c3.pngCDel 3.pngCDel node c4.png = CDel node c3.pngCDel branch3 c3.pngCDel splitsplit2.pngCDel node c4.png (12 mirrors)
  2. CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png = CDel node c1.pngCDel splitsplit1.pngCDel branch3 c2.pngCDel node c2.png (12 mirrors)

B3×A1 can be decomposed into orthogonal groups, 4A1 and D3:

  1. CDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 2.pngCDel node c4.png = CDel node c1.pngCDel 2.pngCDel nodeab c1.pngCDel 2.pngCDel node c4.png (3+1 orthogonal mirrors)
  2. CDel node h0.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 2.pngCDel node h0.png = CDel nodeab c2.pngCDel split2.pngCDel node c3.png (6 mirrors)

Rank 4 Coxeter groups allow a set of 4 mirrors to span 4-space, and divides the 3-sphere into tetrahedral fundamental domains. Lower rank Coxeter groups can only bound hosohedron or hosotope fundamental domains on the 3-sphere.

Like the 3D polyhedral groups, the names of the 4D polychoric groups given are constructed by the Greek prefixes of the cell counts of the corresponding triangle-faced regular polytopes. [12] Extended symmetries exist in uniform polychora with symmetric ring-patterns within the Coxeter diagram construct. Chiral symmetries exist in alternated uniform polychora.

Only irreducible groups have Coxeter numbers, but duoprismatic groups [p,2,p] can be doubled to [[p,2,p]] by adding a 2-fold gyration to the fundamental domain, and this gives an effective Coxeter number of 2p, for example the [4,2,4] and its full symmetry B4, [4,3,3] group with Coxeter number 8.

Weyl
group
Conway
Quaternion
Abstract
structure
Coxeter
diagram
Coxeter
notation
Order Commutator
subgroup
Coxeter
number

(h)
Mirrors
(m)
Full polychoric groups
A4+1/60[I×I].21 S5 CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png[3,3,3]120[3,3,3]+510CDel node c1.png
D4±1/3[T×T].21/2.2S4CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodeab c1.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c1.png[31,1,1]192[31,1,1]+612CDel node c1.png
B4±1/6[O×O].22S4 = S2≀S4CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png[4,3,3]38484CDel node c2.png12CDel node c1.png
F4±1/2[O×O].233.2S4CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c2.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.png[3,4,3]1152[3+,4,3+]1212CDel node c2.png12CDel node c1.png
H4±[I×I].22.(A5×A5).2CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c1.pngCDel 5.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png[5,3,3]14400[5,3,3]+3060CDel node c1.png
Full polyhedral prismatic groups
A3A1+1/24[O×O].23S4×D1CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.png[3,3,2] = [3,3]×[ ]48[3,3]+-6CDel node c1.png1CDel node c3.png
B3A1±1/24[O×O].2S4×D1CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.png[4,3,2] = [4,3]×[ ]96-3CDel node c2.png6CDel node c1.png1CDel node c3.png
H3A1±1/60[I×I].2A5×D1CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel node c1.pngCDel 5.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.png[5,3,2] = [5,3]×[ ]240[5,3]+-15CDel node c1.png1CDel node c3.png
Full duoprismatic groups
4A1 = 2D2±1/2[D4×D4]D14 = D22CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.pngCDel node c1.pngCDel 2.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 2.pngCDel node c4.png[2,2,2] = [ ]4 = [2]216[ ]+41CDel node c1.png1CDel node c2.png1CDel node c3.png1CDel node c4.png
D2B2±1/2[D4×D8]D2×D4CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node c1.pngCDel 2.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 4.pngCDel node c4.png[2,2,4] = [2]×[4]32[2]+-1CDel node c1.png1CDel node c2.png2CDel node c3.png2CDel node c4.png
D2A2±1/2[D4×D6]D2×D3CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c1.pngCDel 2.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 3.pngCDel node c3.png[2,2,3] = [2]×[3]24[3]+-1CDel node c1.png1CDel node c2.png3CDel node c3.png
D2G2±1/2[D4×D12]D2×D6CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node c1.pngCDel 2.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 6.pngCDel node c4.png[2,2,6] = [2]×[6]48-1CDel node c1.png1CDel node c2.png3CDel node c3.png3CDel node c4.png
D2H2±1/2[D4×D10]D2×D5CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node c1.pngCDel 2.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 5.pngCDel node c3.png[2,2,5] = [2]×[5]40[5]+-1CDel node c1.png1CDel node c2.png5CDel node c3.png
2B2±1/2[D8×D8]D42CDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 4.pngCDel node c4.png[4,2,4] = [4]264[2+,2,2+]82CDel node c1.png2CDel node c2.png2CDel node c3.png2CDel node c4.png
B2A2±1/2[D8×D6]D4×D3CDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 3.pngCDel node c3.png[4,2,3] = [4]×[3]48[2+,2,3+]-2CDel node c1.png2CDel node c2.png3CDel node c3.png
B2G2±1/2[D8×D12]D4×D6CDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 6.pngCDel node c4.png[4,2,6] = [4]×[6]96-2CDel node c1.png2CDel node c2.png3CDel node c3.png3CDel node c4.png
B2H2±1/2[D8×D10]D4×D5CDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 5.pngCDel node c3.png[4,2,5] = [4]×[5]80[2+,2,5+]-2CDel node c1.png2CDel node c2.png5CDel node c3.png
2A2±1/2[D6×D6]D32CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel 3.pngCDel node c3.png[3,2,3] = [3]236[3+,2,3+]63CDel node c1.png3CDel node c3.png
A2G2±1/2[D6×D12]D3×D6CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel 6.pngCDel node c4.png[3,2,6] = [3]×[6]72-3CDel node c1.png3CDel node c3.png3CDel node c4.png
2G2±1/2[D12×D12]D62CDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node c1.pngCDel 6.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 6.pngCDel node c4.png[6,2,6] = [6]2144123CDel node c1.png3CDel node c2.png3CDel node c3.png3CDel node c4.png
A2H2±1/2[D6×D10]D3×D5CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel 5.pngCDel node c3.png[3,2,5] = [3]×[5]60[3+,2,5+]-3CDel node c1.png5CDel node c3.png
G2H2±1/2[D12×D10]D6×D5CDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node c1.pngCDel 6.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 5.pngCDel node c3.png[6,2,5] = [6]×[5]120-3CDel node c1.png3CDel node c2.png5CDel node c3.png
2H2±1/2[D10×D10]D52CDel node.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node c1.pngCDel 5.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel 5.pngCDel node c3.png[5,2,5] = [5]2100[5+,2,5+]105CDel node c1.png5CDel node c3.png
In general, p,q=2,3,4...
2I2(2p)±1/2[D4p×D4p]D2p2CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel node c1.pngCDel 2x.pngCDel p.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 2x.pngCDel p.pngCDel node c4.png[2p,2,2p] = [2p]216p2[p+,2,p+]2ppCDel node c1.pngpCDel node c2.pngpCDel node c3.pngpCDel node c4.png
2I2(p)±1/2[D2p×D2p]Dp2CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.pngCDel node c1.pngCDel p.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel p.pngCDel node c3.png[p,2,p] = [p]24p22ppCDel node c1.pngpCDel node c3.png
I2(p)I2(q)±1/2[D4p×D4q]D2p×D2qCDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel q.pngCDel node.pngCDel node c1.pngCDel 2x.pngCDel p.pngCDel node c2.pngCDel 2.pngCDel node c3.pngCDel 2x.pngCDel q.pngCDel node c4.png[2p,2,2q] = [2p]×[2q]16pq[p+,2,q+]-pCDel node c1.pngpCDel node c2.pngqCDel node c3.pngqCDel node c4.png
I2(p)I2(q)±1/2[D2p×D2q]Dp×DqCDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel q.pngCDel node.pngCDel node c1.pngCDel p.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel q.pngCDel node c3.png[p,2,q] = [p]×[q]4pq-pCDel node c1.pngqCDel node c3.png

The symmetry order is equal to the number of cells of the regular polychoron times the symmetry of its cells. The omnitruncated dual polychora have cells that match the fundamental domains of the symmetry group.

Nets for convex regular 4-polytopes and omnitruncated duals
SymmetryA4D4B4F4H4
4-polytope 5-cell demitesseract tesseract 24-cell 120-cell
Cells5 {3,3}16 {3,3}8 {4,3}24 {3,4}120 {5,3}
Cell symmetry[3,3], order 24[4,3], order 48[5,3], order 120
Coxeter diagramCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
4-polytope
net
5-cell net.png 16-cell nets.png 8-cell net.png 24-cell net.png 120-cell net.png
Omnitruncation omni. 5-cell omni. demitesseract omni. tesseract omni. 24-cell omni. 120-cell
Omnitruncation
dual
net
Dual gippid net.png Dual tico net.png Dual gidpith net.png Dual gippic net.png Dual gidpixhi net.png
Coxeter diagramCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel split1.pngCDel nodes f11.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png
Cells5×24 = 120(16/2)×24 = 1928×48 = 38424×48 = 1152120×120 = 14400

Chiral subgroups

The 16-cell edges projected onto a 3-sphere represent 6 great circles of B4 symmetry. 3 circles meet at each vertex. Each circle represents axes of 4-fold symmetry. Stereographic polytope 16cell colour.png
The 16-cell edges projected onto a 3-sphere represent 6 great circles of B4 symmetry. 3 circles meet at each vertex. Each circle represents axes of 4-fold symmetry.
The 24-cell edges projected onto a 3-sphere represent the 16 great circles of F4 symmetry. Four circles meet at each vertex. Each circle represents axes of 3-fold symmetry. Stereographic polytope 24cell faces.png
The 24-cell edges projected onto a 3-sphere represent the 16 great circles of F4 symmetry. Four circles meet at each vertex. Each circle represents axes of 3-fold symmetry.
The 600-cell edges projected onto a 3-sphere represent 72 great circles of H4 symmetry. Six circles meet at each vertex. Each circle represent axes of 5-fold symmetry. Stereographic polytope 600cell.png
The 600-cell edges projected onto a 3-sphere represent 72 great circles of H4 symmetry. Six circles meet at each vertex. Each circle represent axes of 5-fold symmetry.

Direct subgroups of the reflective 4-dimensional point groups are:

Coxeter
notation
Conway
Quaternion
Structure Order Gyration axes
Polychoric groups
CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png[3,3,3]++1/60[I×I] A5 60103 Armed forces red triangle.svg 102 Rhomb.svg
CDel branch h2h2.pngCDel 3ab.pngCDel nodes h2h2.png[[3,3,3]]+±1/60[I×I]A5×Z2120103 Armed forces red triangle.svg (10+?)2 Rhomb.svg
CDel nodes h2h2.pngCDel split2.pngCDel node h2.pngCDel 3.pngCDel node h2.png[31,1,1]+±1/3[T×T]1/2.2A496163 Armed forces red triangle.svg 182 Rhomb.svg
CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png[4,3,3]+±1/6[O×O]2A4 = A2≀A419264 Monomino.png 163 Armed forces red triangle.svg 362 Rhomb.svg
CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png[3,4,3]+±1/2[O×O]3.2A4576184 Monomino.png 163 Purple Fire.svg 163 Armed forces red triangle.svg 722 Rhomb.svg
CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2.pngCDel 4.pngCDel 2.pngCDel node h2.pngCDel 3.pngCDel node h2.png[3+,4,3+]±[T×T]288163 Purple Fire.svg 163 Armed forces red triangle.svg (72+18)2 Rhomb.svg
CDel label4.pngCDel branchgap h2h2.pngCDel 3ab.pngCDel nodes h2h2.png[[3+,4,3+]]±[O×T]576323 Armed forces red triangle.svg (72+18+?)2 Rhomb.svg
CDel label4.pngCDel branch h2h2.pngCDel 3ab.pngCDel nodes h2h2.png[[3,4,3]]+±[O×O]1152184 Monomino.png 323 Armed forces red triangle.svg (72+?)2 Rhomb.svg
CDel node h2.pngCDel 5.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png[5,3,3]+±[I×I]2.(A5×A5)7200725 Patka piechota.png 2003 Armed forces red triangle.svg 4502 Rhomb.svg
Polyhedral prismatic groups
CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2x.pngCDel node h2.png[3,3,2]++1/24[O×O]A4×Z22443 Purple Fire.svg 43 Armed forces red triangle.svg (6+6)2 Rhomb.svg
CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2x.pngCDel node h2.png[4,3,2]+±1/24[O×O]S4×Z24864 Monomino.png 83 Armed forces red triangle.svg (3+6+12)2 Rhomb.svg
CDel node h2.pngCDel 5.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2x.pngCDel node h2.png[5,3,2]+±1/60[I×I]A5×Z2120125 Patka piechota.png 203 Armed forces red triangle.svg (15+30)2 Rhomb.svg
Duoprismatic groups
CDel node h2.pngCDel 2x.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel 2x.pngCDel node h2.png[2,2,2]++1/2[D4×D4]812 Rhomb.svg 12 Rhomb.svg 42 Rhomb.svg
CDel node h2.pngCDel 3.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel 3.pngCDel node h2.png[3,2,3]++1/2[D6×D6]1813 Purple Fire.svg 13 Armed forces red triangle.svg 92 Rhomb.svg
CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel 4.pngCDel node h2.png[4,2,4]++1/2[D8×D8]3214 Blue square.png 14 Monomino.png 162 Rhomb.svg
(p,q=2,3,4...), gcd(p,q)=1
CDel node h2.pngCDel p.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel p.pngCDel node h2.png[p,2,p]++1/2[D2p×D2p]2p21p Disc Plain blue.svg 1p Disc Plain cyan.svg (pp)2 Rhomb.svg
CDel node h2.pngCDel p.pngCDel node h2.pngCDel 2x.pngCDel node h2.pngCDel q.pngCDel node h2.png[p,2,q]++1/2[D2p×D2q]2pq1p Disc Plain blue.svg 1q Disc Plain cyan.svg (pq)2 Rhomb.svg
CDel node h2.pngCDel p.pngCDel node h2.pngCDel 2.pngCDel node h2.pngCDel q.pngCDel node h2.png[p+,2,q+]+[Cp×Cq]Zp×Zqpq1p Disc Plain blue.svg 1q Disc Plain cyan.svg

Pentachoric symmetry

Hexadecachoric symmetry

Icositetrachoric symmetry

Demitesseractic symmetry

Hexacosichoric symmetry

Coxeter 533 order-5 gyration axes.png
[5,3,3]+ 72 order-5 gyrations
Coxeter 533 order-3 gyration axes.png
[5,3,3]+ 200 order-3 gyrations
Coxeter 533 order-2 gyration axes.png
[5,3,3]+ 450 order-2 gyrations
Coxeter 533 all gyration axes.png
[5,3,3]+ all gyrations
Sphere symmetry group ih.png
[5,3], CDel node c2.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c2.png, icosahedral pyramidal group is isomorphic to 3d icosahedral symmetry

Duoprismatic symmetry

Summary of some 4-dimensional point groups

This is a summary of 4-dimensional point groups in Coxeter notation. 227 of them are crystallographic point groups (for particular values of p and q). [14] [ which? ] (nc) is given for non-crystallographic groups. Some crystallographic group[ which? ] have their orders indexed (order.index) by their abstract group structure. [15]

Finite groups
[ ]: CDel node.png
SymbolOrder
[1]+1.1
[1] = [ ]2.1
[2]: CDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[1+,2]+1.1
[2]+2.1
[2]4.1
[2,2]: CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[2+,2+]+
= [(2+,2+,2+)]
1.1
[2+,2+]2.1
[2,2]+4.1
[2+,2]4.1
[2,2]8.1
[2,2,2]: CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[(2+,2+,2+,2+)]
= [2+,2+,2+]+
1.1
[2+,2+,2+]2.1
[2+,2,2+]4.1
[(2,2)+,2+]4
[[2+,2+,2+]]4
[2,2,2]+8
[2+,2,2]8.1
[(2,2)+,2]8
[[2+,2,2+]]8.1
[2,2,2]16.1
[[2,2,2]]+16
[[2,2+,2]]16
[[2,2,2]]32
[p]: CDel node.pngCDel p.pngCDel node.png
SymbolOrder
[p]+p
[p]2p
[p,2]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[p,2]+2p
[p,2]4p
[2p,2+]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2x.pngCDel node.png
SymbolOrder
[2p,2+]4p
[2p+,2+]2p
[p,2,2]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[p+,2,2+]2p
[(p,2)+,2+]2p
[p,2,2]+4p
[p,2,2+]4p
[p+,2,2]4p
[(p,2)+,2]4p
[p,2,2]8p
[2p,2+,2]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[2p+,2+,2+]+p
[2p+,2+,2+]2p
[2p+,2+,2]4p
[2p+,(2,2)+]4p
[2p,(2,2)+]8p
[2p,2+,2]8p
[p,2,q]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel q.pngCDel node.png
SymbolOrder
[p+,2,q+]pq
[p,2,q]+2pq
[p+,2,q]2pq
[p,2,q]4pq
[(p,2)+,2q]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel q.pngCDel node.png
SymbolOrder
[(p,2)+,2q+]2pq
[(p,2)+,2q]4pq
[2p,2,2q]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel q.pngCDel node.png
SymbolOrder
[2p+,2+,2q+]+=
[(2p+,2+,2q+,2+)]
pq
[2p+,2+,2q+]2pq
[2p,2+,2q+]4pq
[((2p,2)+,(2q,2)+)]4pq
[2p,2+,2q]8pq
[[p,2,p]]: CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.png
SymbolOrder
[[p+,2,p+]]2p2
[[p,2,p]]+4p2
[[p,2,p]+]4p2
[[p,2,p]]8p2
[[2p,2,2p]]: CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.png
SymbolOrder
[[(2p+,2+,2p+,2+)]]2p2
[[2p+,2+,2p+]]4p2
[[((2p,2)+,(2p,2)+)]]8p2
[[2p,2+,2p]]16p2
[3,3,2]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[(3,3)Δ,2,1+]
≅ [2,2]+
4
[(3,3)Δ,2]
≅ [2,(2,2)+]
8
[(3,3),2,1+]
≅ [4,2+]
8
[(3,3)+,2,1+]
= [3,3]+
12.5
[(3,3),2]
≅ [2,4,2+]
16
[3,3,2,1+]
= [3,3]
24
[(3,3)+,2]24.10
[3,3,2]+24.10
[3,3,2]48.36
[4,3,2]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[1+,4,3+,2,1+]
= [3,3]+
12
[3+,4,2+]24
[(3,4)+,2+]24
[1+,4,3+,2]
= [(3,3)+,2]
24.10
[3+,4,2,1+]
= [3+,4]
24.10
[(4,3)+,2,1+]
= [4,3]+
24.15
[1+,4,3,2,1+]
= [3,3]
24
[1+,4,(3,2)+]
= [3,3,2]+
24
[3,4,2+]48
[4,3+,2]48.22
[4,(3,2)+]48
[(4,3)+,2]48.36
[1+,4,3,2]
= [3,3,2]
48.36
[4,3,2,1+]
= [4,3]
48.36
[4,3,2]+48.36
[4,3,2]96.5
[5,3,2]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
SymbolOrder
[(5,3)+,2,1+]
= [5,3]+
60.13
[5,3,2,1+]
= [5,3]
120.2
[(5,3)+,2]120.2
[5,3,2]+120.2
[5,3,2]240 (nc)
[31,1,1]: CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
SymbolOrder
[31,1,1]Δ
≅[[4,2+,4]]+
32
[31,1,1]64
[31,1,1]+96.1
[31,1,1]192.2
<[3,31,1]>
= [4,3,3]
384.1
[3[31,1,1]]
= [3,4,3]
1152.1
[3,3,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
SymbolOrder
[3,3,3]+60.13
[3,3,3]120.1
[[3,3,3]]+120.2
[[3,3,3]+]120.1
[[3,3,3]]240.1
[4,3,3]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
SymbolOrder
[1+,4,(3,3)Δ]
= [31,1,1]Δ
≅[[4,2+,4]]+
32
[4,(3,3)Δ]
= [2+,4[2,2,2]+]
≅[[4,2+,4]]
64
[1+,4,(3,3)]
= [31,1,1]
64
[1+,4,(3,3)+]
= [31,1,1]+
96.1
[4,(3,3)]
≅ [[4,2,4]]
128
[1+,4,3,3]
= [31,1,1]
192.2
[4,(3,3)+]192.1
[4,3,3]+192.3
[4,3,3]384.1
[3,4,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
SymbolOrder
[3+,4,3+]288.1
[3,4,3]
= [4,3,3]
384.1
[3,4,3]+576.2
[3+,4,3]576.1
[[3+,4,3+]]576 (nc)
[3,4,3]1152.1
[[3,4,3]]+1152 (nc)
[[3,4,3]+]1152 (nc)
[[3,4,3]]2304 (nc)
[5,3,3]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
SymbolOrder
[5,3,3]+7200 (nc)
[5,3,3]14400 (nc)

See also

Related Research Articles

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

<span class="mw-page-title-main">Point group</span> Group of geometric symmetries with at least one fixed point

In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d). Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules.

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

<span class="mw-page-title-main">Runcinated 5-cell</span> Four-dimensional geometrical object

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.

<span class="mw-page-title-main">Octahedral symmetry</span> 3D symmetry group

A regular octahedron has 24 rotational symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual to an octahedron.

<span class="mw-page-title-main">Tetrahedral symmetry</span> 3D symmetry group

A regular tetrahedron has 12 rotational symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation.

In mathematics, the binary icosahedral group 2I or ⟨2,3,5⟩ is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by the cyclic group of order 2, and is the preimage of the icosahedral group under the 2:1 covering homomorphism

<span class="mw-page-title-main">Truncation (geometry)</span> Operation that cuts polytope vertices, creating a new facet in place of each vertex

In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids.

<span class="mw-page-title-main">Alternation (geometry)</span> Removal of alternate vertices

In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.

<span class="mw-page-title-main">Runcinated 24-cells</span>

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

<span class="mw-page-title-main">Snub (geometry)</span> Geometric operation applied to a polyhedron

In geometry, a snub is an operation applied to a polyhedron. The term originates from Kepler's names of two Archimedean solids, for the snub cube and snub dodecahedron.

<span class="mw-page-title-main">Uniform 5-polytope</span> Five-dimensional geometric shape

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

<span class="mw-page-title-main">Goursat tetrahedron</span>

In geometry, a Goursat tetrahedron is a tetrahedral fundamental domain of a Wythoff construction. Each tetrahedral face represents a reflection hyperplane on 3-dimensional surfaces: the 3-sphere, Euclidean 3-space, and hyperbolic 3-space. Coxeter named them after Édouard Goursat who first looked into these domains. It is an extension of the theory of Schwarz triangles for Wythoff constructions on the sphere.

In geometry, the polyhedral group is any of the symmetry groups of the Platonic solids.

<span class="mw-page-title-main">Coxeter notation</span> Classification system for symmetry groups in geometry

In geometry, Coxeter notation is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson.

In geometry, uniform honeycombs in hyperbolic space are tessellations of convex uniform polyhedron cells. In 3-dimensional hyperbolic space there are 23 Coxeter group families of paracompact uniform honeycombs, generated as Wythoff constructions, and represented by ring permutations of the Coxeter diagrams for each family. These families can produce uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity, similar to the hyperbolic uniform tilings in 2-dimensions.

In four-dimensional Euclidean geometry, the bitruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a bitruncation of a tesseractic honeycomb. It is also called a cantic quarter tesseractic honeycomb from its q2{4,3,3,4} construction.

In the geometry of hyperbolic 3-space, the order-7 tetrahedral honeycomb is a regular space-filling tessellation with Schläfli symbol {3,3,7}. It has seven tetrahedra {3,3} around each edge. All vertices are ultra-ideal with infinitely many tetrahedra existing around each vertex in an order-7 triangular tiling vertex arrangement.

References

  1. Hurley, A. C.; Dirac, P. A. M. (1951). "Finite rotation groups and crystal classes in four dimensions". Mathematical Proceedings of the Cambridge Philosophical Society. 47 (4): 650–661. Bibcode:1951PCPS...47..650H. doi:10.1017/S0305004100027109. S2CID   122468489.
  2. http://met.iisc.ernet.in/~lord/webfiles/Alan/CV25.pdf [ bare URL PDF ]
  3. Mozrzymas, Jan; Solecki, Andrzej (1975). "R4 point groups". Reports on Mathematical Physics. 7 (3): 363–394. Bibcode:1975RpMP....7..363M. doi:10.1016/0034-4877(75)90040-3.
  4. Brown, H; Bülow, R; Neubüser, J; Wondratschek, H; Zassenhaus, H (1978). Crystallographic Groups of Four-Dimensional Space (PDF). Wiley.
  5. Warner, N. P. (1982). "The Symmetry Groups of the Regular Tessellations of S2 and S3". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 383 (1785): 379–398. Bibcode:1982RSPSA.383..379W. doi:10.1098/rspa.1982.0136. JSTOR   2397289. S2CID   119786906.
  6. Coxeter, Regular and Semi-Regular Polytopes II,1985, 2.2 Four-dimensional reflection groups, 2.3 Subgroups of small index
  7. Coxeter, Regular polytopes, §12.6 The number of reflections, equation 12.61
  8. Patrick Du Val, Homographies, quaternions and rotations, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
  9. Conway and Smith, On Quaternions and Octonions, 2003 Chapter 4, section 4.4 Coxeter's Notations for the Polyhedral Groups
  10. "Convex and abstract polytopes", Programme and abstracts, MIT, 2005
  11. Johnson (2015), Chapter 11, Section 11.5 Spherical Coxeter groups
  12. What Are Polyhedra?, with Greek Numerical Prefixes
  13. 1 2 Coxeter, The abstract groups Gm;n;p, (1939)
  14. Weigel, D.; Phan, T.; Veysseyre, R. (1987). "Crystallography, geometry and physics in higher dimensions. III. Geometrical symbols for the 227 crystallographic point groups in four-dimensional space". Acta Crystallogr. A43 (3): 294. Bibcode:1987AcCrA..43..294W. doi:10.1107/S0108767387099367.
  15. Coxeter, Regular and Semi-Regular Polytopes II (1985)