Cubic pyramid | ||
---|---|---|
Schlegel diagram | ||
Type | Polyhedral pyramid | |
Schläfli symbols | ( ) ∨ {4,3} ( ) ∨ [{4} × { }] ( ) ∨ [{ } × { } × { }] | |
Cells | 7 | 1 {4,3} 6 ( ) ∨ {4} |
Faces | 18 | 12 {3} 6 {4} |
Edges | 20 | |
Vertices | 9 | |
Dual | Octahedral pyramid | |
Symmetry group | B3, [4,3,1], order 48 [4,2,1], order 16 [2,2,1], order 8 | |
Properties | convex, regular-faced | |
Net |
In 4-dimensional geometry, the cubic pyramid is bounded by one cube on the base and 6 square pyramid cells which meet at the apex. Since a cube has a circumradius divided by edge length less than one, [1] the square pyramids can be made with regular faces by computing the appropriate height.
3D projection while rotating |
Exactly 8 regular cubic pyramids will fit together around a vertex in four-dimensional space (the apex of each pyramid). This construction yields a tesseract with 8 cubical bounding cells, surrounding a central vertex with 16 edge-length long radii. The tesseract tessellates 4-dimensional space as the tesseractic honeycomb. The 4-dimensional content of a unit-edge-length tesseract is 1, so the content of the regular cubic pyramid is 1/8.
The regular 24-cell has cubic pyramids around every vertex. Placing 8 cubic pyramids on the cubic bounding cells of a tesseract is Gosset's construction [2] of the 24-cell. Thus the 24-cell is constructed from exactly 16 cubic pyramids. The 24-cell tessellates 4-dimensional space as the 24-cell honeycomb.
The dual to the cubic pyramid is an octahedral pyramid, seen as an octahedral base, and 8 regular tetrahedra meeting at an apex.
A cubic pyramid of height zero can be seen as a cube divided into 6 square pyramids along with the center point. These square pyramid-filled cubes can tessellate three-dimensional space as a dual of the truncated cubic honeycomb, called a hexakis cubic honeycomb, or pyramidille.
The cubic pyramid can be folded from a three-dimensional net in the form of a non-convex tetrakis hexahedron, obtained by gluing square pyramids onto the faces of a cube, and folded along the squares where the pyramids meet the cube.
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e., an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral. Its dual polyhedron is the rhombic dodecahedron.
In geometry, an octahedron is a polyhedron with eight faces. An octahedron can be considered as a square bipyramid. When the edges of a square bipyramid are all equal in length, it produces a regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. It is also an example of a deltahedron. An octahedron is the three-dimensional case of the more general concept of a cross polytope.
In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.
In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells, meeting at right angles. The tesseract is one of the six convex regular 4-polytopes.
In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces, 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6-zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate 3-dimensional space, as a permutohedron.
In four-dimensional geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.
In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron.
In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,4}. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. It is also called C16, hexadecachoron, or hexdecahedroid [sic?].
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.
In four-dimensional geometry, a runcinated tesseract is a convex uniform 4-polytope, being a runcination of the regular tesseract.
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.
In geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract.
In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.
In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {4,3,3,4}, and consisting of a packing of tesseracts (4-hypercubes).
In four-dimensional Euclidean geometry, the 24-cell honeycomb, or icositetrachoric honeycomb is a regular space-filling tessellation of 4-dimensional Euclidean space by regular 24-cells. It can be represented by Schläfli symbol {3,4,3,3}.
In 4-dimensional geometry, the octahedral pyramid is bounded by one octahedron on the base and 8 triangular pyramid cells which meet at the apex. Since an octahedron has a circumradius divided by edge length less than one, the triangular pyramids can be made with regular faces by computing the appropriate height.