Square pyramid

Last updated

Square pyramid
Square pyramid.png
Type Johnson
J92J1J2
Faces 4 triangles
1 square
Edges 8
Vertices 5
Vertex configuration [1]
Symmetry group
Volume
Dual polyhedron self-dual [2]
Properties convex
Net
Square pyramid net.svg

In geometry, a square pyramid is a pyramid with a square base, having a total of five faces. If the apex of the pyramid is directly above the center of the square, it is a right square pyramid with four isosceles triangles; otherwise, it is an oblique square pyramid. When all of the pyramid's edges are equal in length, its triangles are all equilateral, and it is called an equilateral square pyramid.

Contents

Square pyramids have appeared throughout the history of architecture, with examples being Egyptian pyramids, and many other similar buildings. They also occur in chemistry in square pyramidal molecular structures. Square pyramids are often used in the construction of other polyhedra. Many mathematicians in ancient times discovered the formula for the volume of a square pyramid with different approaches.

Properties

Right and equilateral square pyramid

A square pyramid has five vertices, eight edges, and five faces. One face, called the base of the pyramid, is a square; the four other faces are triangles. [3] Four of the edges make up the square by connecting its four vertices. The other four edges are known as the lateral edges of the pyramid; they meet at the fifth vertex, called the apex. [4] If the pyramid's apex lies on a line erected perpendicularly from the center of the square, it is called a right square pyramid, and the four triangular faces are isosceles triangles. Otherwise, the pyramid has two or more non-isosceles triangular faces and is called an oblique square pyramid. [5]

3D model of an equilateral square pyramid J1 square pyramid.stl
3D model of an equilateral square pyramid

If all triangular edges are of equal length, the four triangles are equilateral, and the pyramid's faces are all regular polygons, it is an equilateral square pyramid. [6] The dihedral angles between adjacent triangular faces are , and that between the base and each triangular face being half of that, . [1] A convex polyhedron with only regular polygons as faces is called a Johnson solid, and the equilateral square pyramid is the first Johnson solid, enumerated as . [7] Like other right pyramids with a regular polygon as a base, a right square pyramid has pyramidal symmetry. For the square pyramid, this is the symmetry of cyclic group : the pyramid is left invariant by rotations of one-, two-, and three-quarters of a full turn around its axis of symmetry, the line connecting the apex to the center of the base. It is also mirror symmetric relative to any perpendicular plane passing through a bisector of the base. [1] It can be represented as the wheel graph ; more generally, a wheel graph is the representation of the skeleton of a -sided pyramid. [8]

Surface area and volume

The slant height of a right square pyramid is defined as the height of one of its isosceles triangles. It can be obtained via the Pythagorean theorem:

where is the length of the triangle's base, also one of the square's edges, and is the length of the triangle's legs, which are lateral edges of the pyramid. [9] The height of a right square pyramid can be similarly obtained, with a substitution of the slant height formula giving: [10]

A polyhedron's surface area is the sum of the areas of its faces. The surface area of a right square pyramid can be expressed as , where and are the areas of one of its triangles and its base, respectively. The area of a triangle is half of the product of its base and side, with the area of a square being the length of the side squared. This gives the expression: [11]

In general, the volume of a pyramid is equal to one-third of the area of its base multiplied by its height. [12] Expressed in a formula for a square pyramid, this is: [13]

Many mathematicians have discovered the formula for calculating the volume of a square pyramid in ancient times. In the Moscow Mathematical Papyrus, Egyptian mathematicians demonstrated knowledge of the formula for calculating the volume of a truncated square pyramid, suggesting that they were also acquainted with the volume of a square pyramid, but it is unknown how the formula was derived. Beyond the discovery of the volume of a square pyramid, the problem of finding the slope and height of a square pyramid can be found in the Rhind Mathematical Papyrus. [14] The Babylonian mathematicians also considered the volume of a frustum, but gave an incorrect formula for it. [15] One Chinese mathematician Liu Hui also discovered the volume by the method of dissecting a rectangular solid into pieces. [16]

Applications

All Gizah Pyramids.jpg
The Egyptian pyramids are an example of square pyramidal buildings in architecture.
Piramide Chichen-Itza - panoramio (2).jpg
One of the Mesoamerican pyramids, a similar building to the Egyptian, has flat tops and stairs at the faces

In architecture, the pyramids built in ancient Egypt are examples of buildings shaped like square pyramids. [17] Pyramidologists have put forward various suggestions for the design of the Great Pyramid of Giza, including a theory based on the Kepler triangle and the golden ratio. However, modern scholars favor descriptions using integer ratios, as being more consistent with the knowledge of Egyptian mathematics and proportion. [18] The Mesoamerican pyramids are also ancient pyramidal buildings similar to the Egyptian; they differ in having flat tops and stairs ascending their faces. [19] Modern buildings whose designs imitate the Egyptian pyramids include the Louvre Pyramid and the casino hotel Luxor Las Vegas. [20]

In stereochemistry, an atom cluster can have a square pyramidal geometry. A square pyramidal molecule has a main-group element with one active lone pair, which can be described by a model that predicts the geometry of molecules known as VSEPR theory. [21] Examples of molecules with this structure include chlorine pentafluoride, bromine pentafluoride, and iodine pentafluoride. [22]

Tetrakis hexahedra, a construction of polyhedra by augmentation involving square pyramids Tetrakishexahedron.jpg
Tetrakis hexahedra, a construction of polyhedra by augmentation involving square pyramids

The base of a square pyramid can be attached to a square face of another polyhedron to construct new polyhedra, an example of augmentation. For example, a tetrakis hexahedron can be constructed by attaching the base of an equilateral square pyramid onto each face of a cube. [23] Attaching prisms or antiprisms to pyramids is known as elongation or gyroelongation, respectively. [24] Some of the other Johnson solids can be constructed by either augmenting square pyramids or augmenting other shapes with square pyramids: elongated square pyramid , gyroelongated square pyramid , elongated square bipyramid , gyroelongated square bipyramid , augmented triangular prism , biaugmented triangular prism , triaugmented triangular prism , augmented pentagonal prism , biaugmented pentagonal prism , augmented hexagonal prism , parabiaugmented hexagonal prism , metabiaugmented hexagonal prism , triaugmented hexagonal prism , and augmented sphenocorona . [25]

See also

Notes

  1. 1 2 3 Johnson (1966).
  2. Wohlleben (2019), p.  485–486.
  3. Clissold (2020), p.  180.
  4. O'Keeffe & Hyde (2020), p.  141; Smith (2000), p.  98.
  5. Freitag (2014), p.  598.
  6. Hocevar (1903), p.  44.
  7. Uehara (2020), p.  62.
  8. Pisanski & Servatius (2013), p.  21.
  9. Larcombe (1929), p.  177; Perry & Perry (1981), pp.  145–146.
  10. Larcombe (1929), p.  177.
  11. Freitag (2014), p.  798.
  12. Alexander & Koeberlin (2014), p.  403.
  13. Larcombe (1929), p.  178.
  14. Cromwell (1997), pp.  20–22.
  15. Eves (1997), p.  2.
  16. Wagner (1979).
  17. Kinsey, Moore & Prassidis (2011), p.  371.
  18. Herz-Fischler (2000) surveys many alternative theories for this pyramid's shape. See Chapter 11, "Kepler triangle theory", pp. 80–91, for material specific to the Kepler triangle, and p. 166 for the conclusion that the Kepler triangle theory can be eliminated by the principle that "A theory must correspond to a level of mathematics consistent with what was known to the ancient Egyptians." See note 3, p. 229, for the history of Kepler's work with this triangle. See Rossi (2004), pp. 67–68, quoting that "there is no direct evidence in any ancient Egyptian written mathematical source of any arithmetic calculation or geometrical construction which could be classified as the Golden Section ... convergence to , and itself as a number, do not fit with the extant Middle Kingdom mathematical sources"; see also extensive discussion of multiple alternative theories for the shape of the pyramid and other Egyptian architecture, pp. 7–56. See also Rossi & Tout (2002) and Markowsky (1992).
  19. Feder (2010), p.  34; Takacs & Cline (2015), p.  16.
  20. Jarvis & Naested (2012), p.  172; Simonson (2011), p.  154.
  21. Petrucci, Harwood & Herring (2002), p.  414.
  22. Emeléus (1969), p.  13.
  23. Demey & Smessaert (2017).
  24. Slobodan, Obradović & Ðukanović (2015).
  25. Rajwade (2001), pp. 84–89. See Table 12.3, where denotes the -sided prism and denotes the -sided antiprism.

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

In geometry, a bipyramid, dipyramid, or double pyramid is a polyhedron formed by fusing two pyramids together base-to-base. The polygonal base of each pyramid must therefore be the same, and unless otherwise specified the base vertices are usually coplanar and a bipyramid is usually symmetric, meaning the two pyramids are mirror images across their common base plane. When each apex of the bipyramid is on a line perpendicular to the base and passing through its center, it is a right bipyramid; otherwise it is oblique. When the base is a regular polygon, the bipyramid is also called regular.

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Rhombicuboctahedron</span> Archimedean solid with 26 faces

In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at each one. If all the rectangles are themselves square, it is an Archimedean solid. The polyhedron has octahedral symmetry, like the cube and octahedron. Its dual is called the deltoidal icositetrahedron or trapezoidal icositetrahedron, although its faces are not really true trapezoids.

<span class="mw-page-title-main">Isosceles triangle</span> Triangle with at least two sides congruent

In geometry, an isosceles triangle is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of bipyramids and certain Catalan solids.

<span class="mw-page-title-main">Triangular bipyramid</span> 12th Johnson solid; two tetrahedra joined along one face

In geometry, the triangular bipyramid is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces.

<span class="mw-page-title-main">Tetrakis hexahedron</span> Catalan solid with 24 faces

In geometry, a tetrakis hexahedron is a Catalan solid. Its dual is the truncated octahedron, an Archimedean solid.

<span class="mw-page-title-main">Triakis icosahedron</span> Catalan solid with 60 faces

In geometry, the triakis icosahedron is an Archimedean dual solid, or a Catalan solid, with 60 isosceles triangle faces. Its dual is the truncated dodecahedron. It has also been called the kisicosahedron. It was first depicted, in a non-convex form with equilateral triangle faces, by Leonardo da Vinci in Luca Pacioli's Divina proportione, where it was named the icosahedron elevatum. The capsid of the Hepatitis A virus has the shape of a triakis icosahedron.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Triangular cupola</span> 3rd Johnson solid (8 faces)

In geometry, the triangular cupola is one of the Johnson solids. It can be seen as half a cuboctahedron.

<span class="mw-page-title-main">Snub disphenoid</span> 84th Johnson solid (12 triangular faces)

In geometry, the snub disphenoid, Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron is a convex polyhedron with twelve equilateral triangles as its faces. It is not a regular polyhedron because some vertices have four faces and others have five. It is a dodecahedron, one of the eight convex deltahedra, and is the 84th Johnson solid. It can be thought of as a square antiprism where both squares are replaced with two equilateral triangles.

<span class="mw-page-title-main">Elongated triangular pyramid</span> 7th Johnson solid (7 faces)

In geometry, the elongated triangular pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically self-dual.

<span class="mw-page-title-main">Gyrobifastigium</span> 26th Johnson solid (8 faces)

In geometry, the gyrobifastigium is the 26th Johnson solid. It can be constructed by joining two face-regular triangular prisms along corresponding square faces, giving a quarter-turn to one prism. It is the only Johnson solid that can tile three-dimensional space.

<span class="mw-page-title-main">Triangular prism</span> Prism with a 3-sided base

In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is oblique. A uniform triangular prism is a right triangular prism with equilateral bases, and square sides.

In geometry, a pyramid is a polyhedron formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. It is a conic solid with a polygonal base. Many types of pyramids can be found by determining the shape of bases, or cutting off the apex. It can be generalized into higher dimension, known as hyperpyramid. All pyramids are self-dual.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Disphenoid</span> Tetrahedron whose faces are all congruent

In geometry, a disphenoid is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same shape are isotetrahedron, sphenoid, bisphenoid, isosceles tetrahedron, equifacial tetrahedron, almost regular tetrahedron, and tetramonohedron.

<span class="mw-page-title-main">Kepler triangle</span> Right triangle related to the golden ratio

A Kepler triangle is a special right triangle with edge lengths in geometric progression. The ratio of the progression is where is the golden ratio, and the progression can be written: , or approximately . Squares on the edges of this triangle have areas in another geometric progression, . Alternative definitions of the same triangle characterize it in terms of the three Pythagorean means of two numbers, or via the inradius of isosceles triangles.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty', and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".

References