Triangular bipyramid

Last updated
Triangular bipyramid
Triangular dipyramid.png
Type Bipyramid
Deltahedra
Johnson
J11J12J13
Faces 6 triangles
Edges 9
Vertices 5
Vertex configuration
Symmetry group
Dual polyhedron triangular prism
Properties convex
Net
Triangular bipyramid (symmetric net).svg

In geometry, the triangular bipyramid is the hexahedron with six triangular faces, constructed by attaching two tetrahedra face-to-face. The same shape is also called the triangular dipyramid [1] [2] or trigonal bipyramid. [3] If these tetrahedra are regular, all faces of triangular bipyramid are equilateral. It is an example of a deltahedron and of a Johnson solid.

Contents

Many polyhedra are related to the triangular bipyramid, such as new similar shapes derived in different approaches, and the triangular prism as its dual polyhedron. The many applications of triangular bipyramid include the trigonal bipyramid molecular geometry that describes its atom cluster, a solution of the Thomson problem, and the representation of color order systems by the eighteenth century.

Construction and properties

Like other bipyramids, the triangular bipyramid can be constructed by attaching two tetrahedra face-to-face. [2] These tetrahedra cover their triangular base, such that the resulting polyhedron has six triangles, five vertices, and nine edges. [3] The triangular bipyramid is said to be right if the tetrahedra are symmetrically regular and both of their apices are on the line passing through the center of base; otherwise, it is oblique. [4] [5]

Graph of triangular bipyramid Graph of triangular bipyramid.svg
Graph of triangular bipyramid

According to Steinitz's theorem, a graph can be represented as the skeleton of a polyhedron if it is planar and 3-connected graph. In other words, the edges of that graph do not cross but only intersect at the point, and one of any two vertices leaves a connected subgraph when removed. The triangular bipyramid is represented by a graph with nine edges, constructed by adding one vertex connecting to the vertices of a wheel graph representing tetrahedra. [6] [7]

Like other right bipyramids, the triangular bipyramid has three-dimensional point group symmetry, the dihedral group of order twelve: the appearance of the triangular bipyramid is unchanged as it rotated by one-, two-thirds, and full angle around the axis of symmetry (a line passing through two vertices and base's center vertically), and it has mirror symmetry relative to any bisector of the base; it is also symmetrical by reflecting it across a horizontal plane. [8]

In Johnson solid

3D of a triangular bipyramid J12 triangular bipyramid.stl
3D of a triangular bipyramid

If the tetrahedra are regular, all edges of the triangular bipyramid are equal in length, forming equilateral triangular faces. A polyhedron with only equilateral triangles as faces is called a deltahedron. There are only eight different convex deltahedra, one of which is the triangular bipyramid with regular faces. [1] More generally, the convex polyhedron in which all of the faces are regular is the Johnson solid, and every convex deltahedron is a Johnson solid. The triangular bipyramid with the regular faces is among numbered the Johnson solids as , the twelfth Johnson solid. [9]

A triangular bipyramid's surface area is six times that of all triangles. In the case of edge length , its surface area is: [10] Its volume can be calculated by slicing it into two tetrahedra and adding their volume. In the case of edge length , this is: [10]

The dihedral angle of a triangular bipyramid can be obtained by adding the dihedral angle of two regular tetrahedra. The dihedral angle of a triangular bipyramid between adjacent triangular faces is that of the regular tetrahedron, 70.5°. In the case of the edge where two tetrahedra are attached, the dihedral angle of adjacent triangles is twice that, 141.1°. [11]

The Goldner-Harary graph represents the triangular bipyramid augmented by tetrahedra. GoldnerHararyJmol2C.jpg
The Goldner–Harary graph represents the triangular bipyramid augmented by tetrahedra.

Some types of triangular bipyramids may be derived in different ways. For example, the Kleetope of polyhedra is a construction involving the attachment of pyramids; in the case of the triangular bipyramid, its Kleetope can be constructed from triangular bipyramid by attaching tetrahedra onto each of its faces, covering and replacing them with other three triangles; the skeleton of resulting polyhedron represents the Goldner–Harary graph. [12] [13] Another type of triangular bipyramid is by cutting off all of its vertices; this process is known as truncation. [14]

The bipyramids are the dual polyhedron of prisms, for which the bipyramids' vertices correspond to the faces of the prism, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other; dual it again gives the original polyhedron itself. Hence, the triangular bipyramid is the dual polyhedron of the triangular prism, and vice versa. [15] [3] The triangular prism has five faces, nine edges, and six vertices, and it has the same symmetry as the triangular bipyramid. [3]

Applications

The known solution of Thomson problem, with one of them is triangular bipyramid. N 2 to 5 ThomsonSolutions.png
The known solution of Thomson problem, with one of them is triangular bipyramid.

The Thomson problem concerns the minimum-energy configuration of charged particles on a sphere. One of them is a triangular bipyramid, which is a known solution for the case of five electrons, by placing vertices of a triangular bipyramid inscribed in a sphere. [16] This solution is aided by the mathematically rigorous computer. [17]

In the geometry of chemical compound, the trigonal bipyramidal molecular geometry may be described as the atom cluster of the triangular bipyramid. This molecule has a main-group element without an active lone pair, as described by a model that predicts the geometry of molecules known as VSEPR theory. [18] Some examples of this structure are the phosphorus pentafluoride and phosphorus pentachloride in the gas phase. [19]

In the study of color theory, the triangular bipyramid was used to represent the three-dimensional color order system in primary color. The German astronomer Tobias Mayer presented in 1758 that each of its vertices represents the colors: white and black are, respectively, the top and bottom vertices, whereas the rest of the vertices are red, blue, and yellow. [20] [21]

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e., an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral. Its dual polyhedron is the rhombic dodecahedron.

In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a strictly convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two solids with such a property: the first solids are the pyramids, cupolas. and a rotunda; some of the solids may be constructed by attaching with those previous solids, whereas others may not. These solids are named after mathematicians Norman Johnson and Victor Zalgaller.

In geometry, an octahedron is a polyhedron with eight faces. An octahedron can be considered as a square bipyramid. When the edges of a square bipyramid are all equal in length, it produces a regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. It is also an example of a deltahedron. An octahedron is the three-dimensional case of the more general concept of a cross polytope.

<span class="mw-page-title-main">Truncated tetrahedron</span> Archimedean solid with 8 faces

In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges. It can be constructed by truncating all 4 vertices of a regular tetrahedron at one third of the original edge length.

<span class="mw-page-title-main">Gyroelongated square bipyramid</span> 17th Johnson solid

In geometry, the gyroelongated square bipyramid is a polyhedron with 16 triangular faces. it can be constructed from a square antiprism by attaching two equilateral square pyramids to each of its square faces. The same shape is also called hexakaidecadeltahedron, heccaidecadeltahedron, or tetrakis square antiprism; these last names mean a polyhedron with 16 triangular faces. It is an example of deltahedron, and of a Johnson solid.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Pentagonal bipyramid</span> Two pentagonal pyramids joined at the bases

In geometry, the pentagonal bipyramid is a polyhedron with 10 triangular faces. It is constructed by attaching two pentagonal pyramids to each of their bases. If the triangular faces are equilateral, the pentagonal bipyramid is an example of deltahedra, and of Johnson solid.

<span class="mw-page-title-main">Pentagonal pyramid</span> Pyramid with a pentagon base

In geometry, pentagonal pyramid is a pyramid with a pentagon base and five triangular faces, having a total of six faces. It is categorized as Johnson solid if all of the edges are equal in length, forming equilateral triangular faces and a regular pentagonal base. The pentagonal pyramid can be found in many polyhedrons, including their construction. It also occurs in stereochemistry in pentagonal pyramidal molecular geometry.

<span class="mw-page-title-main">Square cupola</span> Cupola with octagonal base

In geometry, the square cupola the cupola with octagonal base. In the case of edges are equal in length, it is the Johnson solid, a convex polyhedron with faces are regular. It can be used to construct many polyhedrons, particularly in other Johnson solids.

<span class="mw-page-title-main">Elongated square gyrobicupola</span> 37th Johnson solid

In geometry, the elongated square gyrobicupola is a polyhedron constructed by two square cupolas attaching onto the bases of octagonal prism, with one of them rotated. It was once mistakenly considered a rhombicuboctahedron by many mathematicians. It is not considered to be an Archimedean solid because it lacks a set of global symmetries that map every vertex to every other vertex, unlike the 13 Archimedean solids. It is also a canonical polyhedron. For this reason, it is also known as pseudo-rhombicuboctahedron, Miller solids, or Miller–Askinuze solid.

<span class="mw-page-title-main">Snub disphenoid</span> Convex polyhedron with 12 triangular faces

In geometry, the snub disphenoid is a convex polyhedron with 12 equilateral triangles as its faces. It is an example of deltahedron and Johnson solid. It can be constructed in different approaches. This shape also has alternative names called Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron; these names mean the 12-sided polyhedron.

<span class="mw-page-title-main">Elongated square pyramid</span> Polyhedron with cube and square pyramid

In geometry, the elongated square pyramid is a convex polyhedron constructed from a cube by attaching an equilateral square pyramid onto one of its faces. It is an example of Johnson solid. It is topologically self-dual.

<span class="mw-page-title-main">Elongated triangular bipyramid</span> 14th Johnson solid; triangular prism capped with tetrahedra

In geometry, the elongated triangular bipyramid or triakis triangular prism a polyhedron constructed from a triangular prism by attaching two tetrahedrons to its bases. It is an example of Johnson solid.

<span class="mw-page-title-main">Elongated square bipyramid</span> Cube capped by two square pyramids

In geometry, the elongated square bipyramid is the polyhedron constructed by attaching two equilateral square pyramids onto a cube's faces that are opposite each other. It can also be seen as 4 lunes linked together with squares to squares and triangles to triangles. It is also been named the pencil cube or 12-faced pencil cube due to its shape.

<span class="mw-page-title-main">Elongated pentagonal bipyramid</span> 16th Johnson solid; pentagonal prism capped by pyramids

In geometry, the elongated pentagonal bipyramid is a polyhedron constructed by attaching two pentagonal pyramids onto the base of a pentagonal prism. It is an example of Johnson solid.

<span class="mw-page-title-main">Augmented triangular prism</span> 49th Johnson solid

In geometry, the augmented triangular prism is a polyhedron constructed by attaching an equilateral square pyramid onto the square face of a triangular prism. As a result, it is an example of Johnson solid. It can be visualized as the chemical compound, known as capped trigonal prismatic molecular geometry.

<span class="mw-page-title-main">Biaugmented triangular prism</span> 50th Johnson solid

In geometry, the biaugmented triangular prism is a polyhedron constructed from a triangular prism by attaching two equilateral square pyramids onto two of its square faces. It is an example of Johnson solid. It can be found in stereochemistry in bicapped trigonal prismatic molecular geometry.

<span class="mw-page-title-main">Triangular prism</span> Prism with a 3-sided base

In geometry, a triangular prism or trigonal prism is a prism with 2 triangular bases. If the edges pair with each triangle's vertex and if they are perpendicular to the base, it is a right triangular prism. A right triangular prism may be both semiregular and uniform.

<span class="mw-page-title-main">Schönhardt polyhedron</span> Non-convex polyhedron with no triangulation

In geometry, a Schönhardt polyhedron is a polyhedron with the same combinatorial structure as a regular octahedron, but with dihedral angles that are non-convex along three disjoint edges. Because it has no interior diagonals, it cannot be triangulated into tetrahedra without adding new vertices. It has the fewest vertices of any polyhedron that cannot be triangulated. It is named after German mathematician Erich Schönhardt, who described it in 1928, although artist Karlis Johansons exhibited a related structure in 1921.

<span class="mw-page-title-main">Ideal polyhedron</span> Shape in hyperbolic geometry

In three-dimensional hyperbolic geometry, an ideal polyhedron is a convex polyhedron all of whose vertices are ideal points, points "at infinity" rather than interior to three-dimensional hyperbolic space. It can be defined as the convex hull of a finite set of ideal points. An ideal polyhedron has ideal polygons as its faces, meeting along lines of the hyperbolic space.

References

  1. 1 2 Trigg, Charles W. (1978). "An infinite class of deltahedra". Mathematics Magazine. 51 (1): 55–57. doi:10.1080/0025570X.1978.11976675. JSTOR   2689647. MR   1572246.
  2. 1 2 Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Hindustan Book Agency. p. 84. doi:10.1007/978-93-86279-06-4. ISBN   978-93-86279-06-4.
  3. 1 2 3 4 King, Robert B. (1994). "Polyhedral Dynamics". In Bonchev, Danail D.; Mekenyan, O.G. (eds.). Graph Theoretical Approaches to Chemical Reactivity. Springer. doi:10.1007/978-94-011-1202-4. ISBN   978-94-011-1202-4.
  4. Niu, Wenxin; Xu, Guobao (2011). "Crystallographic control of noble metal nanocrystals". Nano Today. 6 (3): 265–285. doi:10.1016/j.nantod.2011.04.006.
  5. Alexandrov, Victor (2017). "How many times can the volume of a convex polyhedron be increased by isometric deformations?". Beiträge zur Algebra und Geometrie. 58 (3): 549–554. arXiv: 1607.06604 . doi:10.1007/s13366-017-0336-8.
  6. Tutte, W. T. (2001). Graph Theory. Cambridge University Press. p. 113. ISBN   978-0-521-79489-3.
  7. Sajjad, Wassid; Sardar, Muhammad S.; Pan, Xiang-Feng (2024). "Computation of resistance distance and Kirchhoff index of chain of triangular bipyramid hexahedron". Applied Mathematics and Computation. 461: 1–12. doi:10.1016/j.amc.2023.128313. S2CID   261797042.
  8. Alexander, Daniel C.; Koeberlin, Geralyn M. (2014). Elementary Geometry for College Students (6th ed.). Cengage Learning. p. 403. ISBN   978-1-285-19569-8.
  9. Uehara, Ryuhei (2020). Introduction to Computational Origami: The World of New Computational Geometry. Springer. doi:10.1007/978-981-15-4470-5. ISBN   978-981-15-4470-5. S2CID   220150682.
  10. 1 2 Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR   0290245.
  11. Johnson, Norman W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics . 18: 169–200. doi: 10.4153/cjm-1966-021-8 . MR   0185507. S2CID   122006114. Zbl   0132.14603.
  12. Grünbaum, Branko (1967). Convex Polytopes. Wiley Interscience. p. 357.. Same page, 2nd ed., Graduate Texts in Mathematics 221, Springer-Verlag, 2003, ISBN   978-0-387-40409-7.
  13. Ewald, Günter (1973). "Hamiltonian circuits in simplicial complexes". Geometriae Dedicata. 2 (1): 115–125. doi:10.1007/BF00149287. S2CID   122755203.
  14. Haji-Akbari, Amir; Chen, Elizabeth R.; Engel, Michael; Glotzer, Sharon C. (2013). "Packing and self-assembly of truncated triangular bipyramids". Phys. Rev. E. 88 (1): 012127. arXiv: 1304.3147 . Bibcode:2013PhRvE..88a2127H. doi:10.1103/physreve.88.012127. PMID   23944434. S2CID   8184675..
  15. Sibley, Thomas Q. (2015). Thinking Geometrically: A Survey of Geometries. Mathematical Association of American. p. 53. ISBN   978-1-939512-08-6.
  16. Sloane, N. J. A.; Hardin, R. H.; Duff, T. D. S.; Conway, J. H. (1995), "Minimal-energy clusters of hard spheres", Discrete & Computational Geometry , 14 (3): 237–259, doi: 10.1007/BF02570704 , MR   1344734, S2CID   26955765
  17. Schwartz, Richard Evan (2013). "The Five-Electron Case of Thomson's Problem". Experimental Mathematics. 22 (2): 157–186. doi:10.1080/10586458.2013.766570. S2CID   38679186.
  18. Petrucci, R. H.; W. S., Harwood; F. G., Herring (2002). General Chemistry: Principles and Modern Applications (8th ed.). Prentice-Hall. pp. 413–414. ISBN   978-0-13-014329-7. See table 11.1.
  19. Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. p. 407. ISBN   978-0-13-039913-7.
  20. Kuehni, Rolf G. (2003). Color Space and Its Divisions: Color Order from Antiquity to the Present. John & Sons Wiley. p. 53. ISBN   978-0-471-46146-3.
  21. Kuehni, Rolf G. (2013). Color: An Introduction to Practice and Principles. John & Sons Wiley. p. 198. ISBN   978-1-118-17384-8.