Square gyrobicupola

Last updated
Square gyrobicupola
Square gyrobicupola.png
Type Bicupola,
Johnson
J28J29J30
Faces 8 triangles
2+8 squares
Edges 32
Vertices 16
Vertex configuration 8(3.4.3.4)
8(3.43)
Symmetry group D4d
Dual polyhedron Elongated square trapezohedron
Properties convex
Net
Johnson solid 29 net.png

In geometry, the square gyrobicupola is one of the Johnson solids (J29). Like the square orthobicupola (J28), it can be obtained by joining two square cupolae (J4) along their bases. The difference is that in this solid, the two halves are rotated 45 degrees with respect to one another.

Contents

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [1]

The square gyrobicupola is the second in an infinite set of gyrobicupolae.

Related to the square gyrobicupola is the elongated square gyrobicupola. This polyhedron is created when an octagonal prism is inserted between the two halves of the square gyrobicupola.

Formulae

The following formulae for volume and surface area can be used if all faces are regular, with edge length a: [2]

The square gyrobicupola forms space-filling honeycombs with tetrahedra, cubes and cuboctahedra; and with tetrahedra, square pyramids, and elongated square bipyramids. (The latter unit can be decomposed into elongated square pyramids, cubes, and/or square pyramids). [3]

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Square cupola</span> Cupola with octagonal base

In geometry, the square cupola the cupola with octagonal base. In the case of edges are equal in length, it is the Johnson solid, a convex polyhedron with faces are regular. It can be used to construct many polyhedrons, particularly in other Johnson solids.

<span class="mw-page-title-main">Elongated square cupola</span> 19th Johnson solid

In geometry, the elongated square cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a square cupola by attaching an octagonal prism to its base. The solid can be seen as a rhombicuboctahedron with its "lid" removed.

<span class="mw-page-title-main">Elongated square gyrobicupola</span> 37th Johnson solid

In geometry, the elongated square gyrobicupola is a polyhedron constructed by two square cupolas attaching onto the bases of octagonal prism, with one of them rotated. It is also known as pseudo-rhombicuboctahedron because many mathematicians mistakenly constructed a rhombicuboctahedron. It is not considered to be an Archimedean solid because it lacks a set of global symmetries that map every vertex to every other vertex, unlike the 13 Archimedean solids. It is also a canonical polyhedron.

<span class="mw-page-title-main">Square orthobicupola</span> 28th Johnson solid; 2 square cupolae joined base-to-base

In geometry, the square orthobicupola is one of the Johnson solids. As the name suggests, it can be constructed by joining two square cupolae along their octagonal bases, matching like faces. A 45-degree rotation of one cupola before the joining yields a square gyrobicupola.

<span class="mw-page-title-main">Elongated pentagonal gyrobirotunda</span> 43rd Johnson solid

In geometry, the elongated pentagonal gyrobirotunda or elongated icosidodecahedron is one of the Johnson solids. As the name suggests, it can be constructed by elongating a "pentagonal gyrobirotunda," or icosidodecahedron, by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal rotundae through 36 degrees before inserting the prism yields an elongated pentagonal orthobirotunda.

<span class="mw-page-title-main">Elongated pentagonal orthobirotunda</span> 42nd Johnson solid

In geometry, the elongated pentagonal orthobirotunda is one of the Johnson solids. Its Conway polyhedron notation is at5jP5. As the name suggests, it can be constructed by elongating a pentagonal orthobirotunda by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal rotundae through 36 degrees before inserting the prism yields the elongated pentagonal gyrobirotunda.

<span class="mw-page-title-main">Elongated triangular pyramid</span> 7th Johnson solid (7 faces)

In geometry, the elongated triangular pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically self-dual.

<span class="mw-page-title-main">Elongated square pyramid</span> Polyhedron with cube and square pyramid

In geometry, the elongated square pyramid is a convex polyhedron constructed from a cube by attaching an equilateral square pyramid onto one of its faces. It is an example of Johnson solid. It is topologically self-dual.

<span class="mw-page-title-main">Elongated square bipyramid</span> Cube capped by two square pyramids

In geometry, the elongated square bipyramid is the polyhedron constructed by attaching two equilateral square pyramids onto a cube's faces that are opposite each other. It can also be seen as 4 lunes linked together with squares to squares and triangles to triangles. It is also been named the pencil cube or 12-faced pencil cube due to its shape.

<span class="mw-page-title-main">Elongated pentagonal cupola</span> 20th Johnson solid

In geometry, the elongated pentagonal cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal cupola by attaching a decagonal prism to its base. The solid can also be seen as an elongated pentagonal orthobicupola with its "lid" removed.

<span class="mw-page-title-main">Gyrobifastigium</span> 26th Johnson solid (8 faces)

In geometry, the gyrobifastigium is the 26th Johnson solid. It can be constructed by joining two face-regular triangular prisms along corresponding square faces, giving a quarter-turn to one prism. It is the only Johnson solid that can tile three-dimensional space.

<span class="mw-page-title-main">Pentagonal orthobicupola</span> 30th Johnson solid; 2 pentagonal cupolae joined base-to-base

In geometry, the pentagonal orthobicupola is one of the Johnson solids. As the name suggests, it can be constructed by joining two pentagonal cupolae along their decagonal bases, matching like faces. A 36-degree rotation of one cupola before the joining yields a pentagonal gyrobicupola.

<span class="mw-page-title-main">Elongated pentagonal orthobicupola</span> 38th Johnson solid

In geometry, the elongated pentagonal orthobicupola or cantellated pentagonal prism is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal orthobicupola by inserting a decagonal prism between its two congruent halves. Rotating one of the cupolae through 36 degrees before inserting the prism yields an elongated pentagonal gyrobicupola.

<span class="mw-page-title-main">Elongated pentagonal gyrobicupola</span> 39th Johnson solid

In geometry, the elongated pentagonal gyrobicupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal gyrobicupola by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal cupolae through 36 degrees before inserting the prism yields an elongated pentagonal orthobicupola.

<span class="mw-page-title-main">Elongated triangular cupola</span> 18th Johnson solid

In geometry, the elongated triangular cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a triangular cupola by attaching a hexagonal prism to its base.

<span class="mw-page-title-main">Triangular orthobicupola</span> 27th Johnson solid; 2 triangular cupolae joined base-to-base

In geometry, the triangular orthobicupola is one of the Johnson solids. As the name suggests, it can be constructed by attaching two triangular cupolas along their bases. It has an equal number of squares and triangles at each vertex; however, it is not vertex-transitive. It is also called an anticuboctahedron, twisted cuboctahedron or disheptahedron. It is also a canonical polyhedron.

<span class="mw-page-title-main">Elongated triangular orthobicupola</span> Johnson solid with 20 faces

In geometry, the elongated triangular orthobicupola is a polyhedron constructed by attaching two regular triangular cupola into the base of a regular hexagonal prism. It is an example of Johnson solid.

<span class="mw-page-title-main">Elongated triangular gyrobicupola</span> 36th Johnson solid

In geometry, the elongated triangular gyrobicupola is a polyhedron constructed by attaching two regular triangular cupolas to the base of a regular hexagonal prism, with one of them rotated in . It is an example of Johnson solid.

<span class="mw-page-title-main">Elongated pentagonal orthocupolarotunda</span> 40th Johnson solid

In geometry, the elongated pentagonal orthocupolarotunda is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal orthocupolarotunda by inserting a decagonal prism between its halves. Rotating either the cupola or the rotunda through 36 degrees before inserting the prism yields an elongated pentagonal gyrocupolarotunda.

References

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi:10.4153/cjm-1966-021-8, MR   0185507, Zbl   0132.14603 .
  2. Stephen Wolfram, "Triangular gyrobicupola" from Wolfram Alpha. Retrieved July 23, 2010.
  3. "J29 honeycomb".