Augmented pentagonal prism

Last updated
Augmented pentagonal prism
Augmented pentagonal prism.png
Type Johnson
J51J52J53
Faces 2x2 triangles
2x2 squares
2 pentagons
Edges 19
Vertices 11
Vertex configuration 2+4(42.5)
1(34)
4(32.4.5)
Symmetry group C2v
Dual polyhedron monolaterotruncated pentagonal bipyramid
Properties convex
Net
Johnson solid 52 net.png

In geometry, the augmented pentagonal prism is one of the Johnson solids (J52). As the name suggests, it can be constructed by augmenting a pentagonal prism by attaching a square pyramid (J1) to one of its equatorial faces.

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [1]


  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi:10.4153/cjm-1966-021-8, MR   0185507, Zbl   0132.14603 .

Related Research Articles

Metabidiminished icosahedron 62nd Johnson solid

In geometry, the metabidiminished icosahedron is one of the Johnson solids. The name refers to one way of constructing it, by removing two pentagonal pyramids from a regular icosahedron, replacing two sets of five triangular faces of the icosahedron with two adjacent pentagonal faces. If two pentagonal pyramids are removed to form nonadjacent pentagonal faces, the result is instead the pentagonal antiprism.

Gyroelongated pentagonal rotunda

In geometry, the gyroelongated pentagonal rotunda is one of the Johnson solids (J25). As the name suggests, it can be constructed by gyroelongating a pentagonal rotunda (J6) by attaching a decagonal antiprism to its base. It can also be seen as a gyroelongated pentagonal birotunda (J48) with one pentagonal rotunda removed.

Pentagonal orthobirotunda 34th Johnson solid; 2 pentagonal rotundae joined base-to-base

In geometry, the pentagonal orthobirotunda is one of the Johnson solids. It can be constructed by joining two pentagonal rotundae along their decagonal faces, matching like faces.

Gyroelongated pentagonal birotunda 48th Johnson solid

In geometry, the gyroelongated pentagonal birotunda is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a pentagonal birotunda by inserting a decagonal antiprism between its two halves.

Elongated pentagonal bipyramid 16th Johnson solid; pentagonal prism capped by pyramids

In geometry, the elongated pentagonal bipyramid or pentakis pentagonal prism is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal bipyramid by inserting a pentagonal prism between its congruent halves.

Gyroelongated pentagonal cupola

In geometry, the gyroelongated pentagonal cupola is one of the Johnson solids (J24). As the name suggests, it can be constructed by gyroelongating a pentagonal cupola (J5) by attaching a decagonal antiprism to its base. It can also be seen as a gyroelongated pentagonal bicupola (J46) with one pentagonal cupola removed.

Augmented triangular prism 49th Johnson solid

In geometry, the augmented triangular prism is one of the Johnson solids. As the name suggests, it can be constructed by augmenting a triangular prism by attaching a square pyramid to one of its equatorial faces. The resulting solid bears a superficial resemblance to the gyrobifastigium, the difference being that the latter is constructed by attaching a second triangular prism, rather than a square pyramid.

Biaugmented triangular prism 50th Johnson solid

In geometry, the biaugmented triangular prism is one of the Johnson solids. As the name suggests, it can be constructed by augmenting a triangular prism by attaching square pyramids to two of its equatorial faces.

Biaugmented pentagonal prism 53rd Johnson solid

In geometry, the biaugmented pentagonal prism is one of the Johnson solids. As the name suggests, it can be constructed by doubly augmenting a pentagonal prism by attaching square pyramids to two of its nonadjacent equatorial faces.

Augmented hexagonal prism 54th Johnson solid

In geometry, the augmented hexagonal prism is one of the Johnson solids. As the name suggests, it can be constructed by augmenting a hexagonal prism by attaching a square pyramid to one of its equatorial faces. When two or three such pyramids are attached, the result may be a parabiaugmented hexagonal prism, a metabiaugmented hexagonal prism, or a triaugmented hexagonal prism.

Parabiaugmented hexagonal prism 55th Johnson solid

In geometry, the parabiaugmented hexagonal prism is one of the Johnson solids. As the name suggests, it can be constructed by doubly augmenting a hexagonal prism by attaching square pyramids to two of its nonadjacent, parallel (opposite) equatorial faces. Attaching the pyramids to nonadjacent, nonparallel equatorial faces yields a metabiaugmented hexagonal prism.

Metabiaugmented hexagonal prism 56th Johnson solid

In geometry, the metabiaugmented hexagonal prism is one of the Johnson solids. As the name suggests, it can be constructed by doubly augmenting a hexagonal prism by attaching square pyramids to two of its nonadjacent, nonparallel equatorial faces. Attaching the pyramids to opposite equatorial faces yields a parabiaugmented hexagonal prism.

Triaugmented hexagonal prism 57th Johnson solid

In geometry, the triaugmented hexagonal prism is one of the Johnson solids. As the name suggests, it can be constructed by triply augmenting a hexagonal prism by attaching square pyramids to three of its nonadjacent equatorial faces.

Augmented dodecahedron 58th Johnson solid

In geometry, the augmented dodecahedron is one of the Johnson solids, consisting of a dodecahedron with a pentagonal pyramid attached to one of the faces. When two or three such pyramids are attached, the result may be a parabiaugmented dodecahedron, a metabiaugmented dodecahedron, or a triaugmented dodecahedron.

Parabiaugmented dodecahedron 59th Johnson solid

In geometry, the parabiaugmented dodecahedron is one of the Johnson solids. It can be seen as a dodecahedron with two pentagonal pyramids attached to opposite faces. When pyramids are attached to a dodecahedron in other ways, they may result in an augmented dodecahedron, a metabiaugmented dodecahedron, a triaugmented dodecahedron, or even a pentakis dodecahedron if the faces are made to be irregular.

Metabiaugmented dodecahedron 60th Johnson solid

In geometry, the metabiaugmented dodecahedron is one of the Johnson solids. It can be viewed as a dodecahedron with two pentagonal pyramids attached to two faces that are separated by one face. When pyramids are attached to a dodecahedron in other ways, they may result in an augmented dodecahedron, a parabiaugmented dodecahedron, a triaugmented dodecahedron, or even a pentakis dodecahedron if the faces are made to be irregular.

Metagyrate diminished rhombicosidodecahedron

In geometry, the metagyrate diminished rhombicosidodecahedron is one of the Johnson solids (J78). It can be constructed as a rhombicosidodecahedron with one pentagonal cupola rotated through 36 degrees, and a non-opposing pentagonal cupola removed.

Gyrate bidiminished rhombicosidodecahedron

In geometry, the gyrate bidiminished rhombicosidodecahedron is one of the Johnson solids (J82). It can be produced by removing two pentagonal cupolae and rotating a third pentagonal cupola through 36 degrees.

Augmented truncated cube

In geometry, the augmented truncated cube is one of the Johnson solids (J66). As its name suggests, it is created by attaching a square cupola (J4) onto one octagonal face of a truncated cube.

Augmented truncated dodecahedron

In geometry, the augmented truncated dodecahedron is one of the Johnson solids (J68). As its name suggests, it is created by attaching a pentagonal cupola (J5) onto one decagonal face of a truncated dodecahedron.