Disphenocingulum

Last updated
Disphenocingulum
Disphenocingulum.png
Type Johnson
J89 - J90 - J91
Faces 4+2x8 triangles
4 squares
Edges 38
Vertices 16
Vertex configuration 4(32.42)
4(35)
8(34.4)
Symmetry group D2d
Dual polyhedron Order-5 truncated snub disphenoid
Properties convex
Net
Johnson solid 90 net.png
3D model of a disphenocingulum J90 disphenocingulum.stl
3D model of a disphenocingulum

In geometry, the disphenocingulum or pentakis elongated gyrobifastigium is one of the Johnson solids (J90). It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

Contents

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [1]

Cartesian coordinates

Let a ≈ 0.76713 be the second smallest positive root of the polynomial

and and .

Then, Cartesian coordinates of a disphenocingulum with edge length 2 are given by the union of the orbits of the points

under the action of the group generated by reflections about the xz-plane and the yz-plane. [2]

Related Research Articles

Triangular bipyramid

In geometry, the triangular bipyramid is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces.

Pentagonal bipyramid

In geometry, the pentagonal bipyramid is third of the infinite set of face-transitive bipyramids. Each bipyramid is the dual of a uniform prism.

Elongated pentagonal pyramid

In geometry, the elongated pentagonal pyramid is one of the Johnson solids (J9). As the name suggests, it can be constructed by elongating a pentagonal pyramid (J2) by attaching a pentagonal prism to its base.

Triangular cupola

In geometry, the triangular cupola is one of the Johnson solids (J3). It can be seen as half a cuboctahedron.

Square cupola

In geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids (J4). It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagon.

Pentagonal rotunda

In geometry, the pentagonal rotunda is one of the Johnson solids (J6). It can be seen as half of an icosidodecahedron, or as half of a pentagonal orthobirotunda. It has a total of 17 faces.

Elongated pentagonal gyrobirotunda

In geometry, the elongated pentagonal gyrobirotunda is one of the Johnson solids (J43). As the name suggests, it can be constructed by elongating a "pentagonal gyrobirotunda," or icosidodecahedron, by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal rotundae (J6) through 36 degrees before inserting the prism yields an elongated pentagonal orthobirotunda (J42).

Pentagonal cupola

In geometry, the pentagonal cupola is one of the Johnson solids (J5). It can be obtained as a slice of the rhombicosidodecahedron. The pentagonal cupola consists of 5 equilateral triangles, 5 squares, 1 pentagon, and 1 decagon.

Snub square antiprism

In geometry, the snub square antiprism is one of the Johnson solids (J85). A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra. They were named by Norman Johnson, who first listed these polyhedra in 1966.

Hebesphenomegacorona

In geometry, the hebesphenomegacorona is one of the Johnson solids (J89). It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids. It has 21 faces, 18 triangles and 3 squares, 33 edges, and 14 vertices.

Sphenomegacorona

In geometry, the sphenomegacorona is one of the Johnson solids (J88). It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

Sphenocorona

In geometry, the sphenocorona is one of the Johnson solids (J86). It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

Bilunabirotunda

In geometry, the bilunabirotunda is one of the Johnson solids (J91).

Triangular hebesphenorotunda

In geometry, the triangular hebesphenorotunda is one of the Johnson solids (J92).

Augmented sphenocorona

In geometry, the augmented sphenocorona is one of the Johnson solids (J87), and is obtained by adding a square pyramid to one of the square faces of the sphenocorona. It is the only Johnson solid arising from "cut and paste" manipulations where the components are not all prisms, antiprisms or sections of Platonic or Archimedean solids.

Elongated triangular pyramid

In geometry, the elongated triangular pyramid is one of the Johnson solids (J7). As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically self-dual.

Elongated square pyramid

In geometry, the elongated square pyramid is one of the Johnson solids (J8). As the name suggests, it can be constructed by elongating a square pyramid (J1) by attaching a cube to its square base. Like any elongated pyramid, it is topologically self-dual.

Elongated triangular bipyramid

In geometry, the elongated triangular bipyramid or triakis triangular prism is one of the Johnson solids (J14), convex polyhedra whose faces are regular polygons. As the name suggests, it can be constructed by elongating a triangular bipyramid (J12) by inserting a triangular prism between its congruent halves.

Elongated pentagonal orthobicupola

In geometry, the elongated pentagonal orthobicupola or cantellated pentagonal prism is one of the Johnson solids (J38). As the name suggests, it can be constructed by elongating a pentagonal orthobicupola (J30) by inserting a decagonal prism between its two congruent halves. Rotating one of the cupolae through 36 degrees before inserting the prism yields an elongated pentagonal gyrobicupola (J39).

Elongated triangular orthobicupola

In geometry, the elongated triangular orthobicupola or cantellated triangular prism is one of the Johnson solids (J35). As the name suggests, it can be constructed by elongating a triangular orthobicupola (J27) by inserting a hexagonal prism between its two halves. The resulting solid is superficially similar to the rhombicuboctahedron, with the difference that it has threefold rotational symmetry about its axis instead of fourfold symmetry.

References

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi:10.4153/cjm-1966-021-8, MR   0185507, Zbl   0132.14603 .
  2. Timofeenko, A. V. (2009-10-17). "The non-platonic and non-Archimedean noncomposite polyhedra". Journal of Mathematical Sciences. 162 (5): 710–729. doi:10.1007/s10958-009-9655-0. ISSN   1072-3374. S2CID   120114341.