Elongated pentagonal pyramid

Last updated
Elongated pentagonal pyramid
Elongated pentagonal pyramid.png
Type Johnson
J8J9J10
Faces 5 triangles
5 squares
1 pentagon
Edges 20
Vertices 11
Vertex configuration 5(42.5)
5(32.42)
1(35)
Symmetry group C5v, [5], (*55)
Rotation group C5, [5]+, (55)
Dual polyhedron self
Properties convex
Net
Elongated Pentagonal Pyramid Net.svg
3D model of an elongated pentagonal pyramid J9 elongated pentagonal pyramid.stl
3D model of an elongated pentagonal pyramid

In geometry, the elongated pentagonal pyramid is one of the Johnson solids (J9). As the name suggests, it can be constructed by elongating a pentagonal pyramid (J2) by attaching a pentagonal prism to its base.

Contents

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [1]

Formulae

The following formulae for the height (), surface area () and volume () can be used if all faces are regular, with edge length : [2]

Dual polyhedron

The dual of the elongated pentagonal pyramid has 11 faces: 5 triangular, 1 pentagonal and 5 trapezoidal. It is topologically identical to the Johnson solid.

Dual elongated pentagonal pyramidNet of dual
Dual elongated pentagonal pyramid.png Dual elongated pentagonal pyramid net.png

See also

Related Research Articles

Triangular bipyramid 12th Johnson solid; two tetrahedra joined along one face

In geometry, the triangular bipyramid is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces.

Pentagonal bipyramid 13th Johnson solid; two pentagonal pyramids joined at the bases

In geometry, the pentagonal bipyramid is third of the infinite set of face-transitive bipyramids, and the 13th Johnson solid. Each bipyramid is the dual of a uniform prism.

Triangular cupola 3rd Johnson solid (8 faces)

In geometry, the triangular cupola is one of the Johnson solids. It can be seen as half a cuboctahedron.

Square cupola 4th Johnson solid (10 faces)

In geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids. It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagon.

Elongated square cupola

In geometry, the elongated square cupola is one of the Johnson solids (J19). As the name suggests, it can be constructed by elongating a square cupola (J4) by attaching an octagonal prism to its base. The solid can be seen as a rhombicuboctahedron with its "lid" removed.

Elongated pentagonal rotunda

In geometry, the elongated pentagonal rotunda is one of the Johnson solids (J21). As the name suggests, it can be constructed by elongating a pentagonal rotunda (J6) by attaching a decagonal prism to its base. It can also be seen as an elongated pentagonal orthobirotunda (J42) with one pentagonal rotunda removed.

Elongated pentagonal gyrobirotunda

In geometry, the elongated pentagonal gyrobirotunda is one of the Johnson solids (J43). As the name suggests, it can be constructed by elongating a "pentagonal gyrobirotunda," or icosidodecahedron, by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal rotundae (J6) through 36 degrees before inserting the prism yields an elongated pentagonal orthobirotunda (J42).

Elongated pentagonal orthobirotunda

In geometry, the elongated pentagonal orthobirotunda is one of the Johnson solids (J42). Its Conway polyhedron notation is at5jP5. As the name suggests, it can be constructed by elongating a pentagonal orthobirotunda (J34) by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal rotundae (J6) through 36 degrees before inserting the prism yields the elongated pentagonal gyrobirotunda (J43).

Pentagonal cupola 5th Johnson solid (12 faces)

In geometry, the pentagonal cupola is one of the Johnson solids. It can be obtained as a slice of the rhombicosidodecahedron. The pentagonal cupola consists of 5 equilateral triangles, 5 squares, 1 pentagon, and 1 decagon.

Elongated triangular pyramid 7th Johnson solid (7 faces)

In geometry, the elongated triangular pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically self-dual.

Elongated square pyramid 8th Johnson solid (9 faces)

In geometry, the elongated square pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a square pyramid by attaching a cube to its square base. Like any elongated pyramid, it is topologically self-dual.

Elongated triangular bipyramid 14th Johnson solid; triangular prism capped with tetrahedra

In geometry, the elongated triangular bipyramid or triakis triangular prism is one of the Johnson solids, convex polyhedra whose faces are regular polygons. As the name suggests, it can be constructed by elongating a triangular bipyramid by inserting a triangular prism between its congruent halves.

Elongated square bipyramid 15th Johnson solid; cube capped by 2 square pyramids

In geometry, the elongated square bipyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating an octahedron by inserting a cube between its congruent halves.

Elongated pentagonal cupola

In geometry, the elongated pentagonal cupola is one of the Johnson solids (J20). As the name suggests, it can be constructed by elongating a pentagonal cupola (J5) by attaching a decagonal prism to its base. The solid can also be seen as an elongated pentagonal orthobicupola (J38) with its "lid" removed.

Elongated pentagonal orthobicupola

In geometry, the elongated pentagonal orthobicupola or cantellated pentagonal prism is one of the Johnson solids (J38). As the name suggests, it can be constructed by elongating a pentagonal orthobicupola (J30) by inserting a decagonal prism between its two congruent halves. Rotating one of the cupolae through 36 degrees before inserting the prism yields an elongated pentagonal gyrobicupola (J39).

Elongated pentagonal gyrobicupola

In geometry, the elongated pentagonal gyrobicupola is one of the Johnson solids (J39). As the name suggests, it can be constructed by elongating a pentagonal gyrobicupola (J31) by inserting a decagonal prism between its congruent halves. Rotating one of the pentagonal cupolae (J5) through 36 degrees before inserting the prism yields an elongated pentagonal orthobicupola (J38).

Elongated triangular cupola

In geometry, the elongated triangular cupola is one of the Johnson solids (J18). As the name suggests, it can be constructed by elongating a triangular cupola (J3) by attaching a hexagonal prism to its base.

Elongated triangular gyrobicupola

In geometry, the elongated triangular gyrobicupola is one of the Johnson solids (J36). As the name suggests, it can be constructed by elongating a "triangular gyrobicupola," or cuboctahedron, by inserting a hexagonal prism between its two halves, which are congruent triangular cupolae (J3). Rotating one of the cupolae through 60 degrees before the elongation yields the triangular orthobicupola (J35).

Elongated pentagonal gyrocupolarotunda

In geometry, the elongated pentagonal gyrocupolarotunda is one of the Johnson solids (J41). As the name suggests, it can be constructed by elongating a pentagonal gyrocupolarotunda (J33) by inserting a decagonal prism between its halves. Rotating either the pentagonal cupola (J5) or the pentagonal rotunda (J6) through 36 degrees before inserting the prism yields an elongated pentagonal orthocupolarotunda (J40).

Elongated pentagonal orthocupolarotunda

In geometry, the elongated pentagonal orthocupolarotunda is one of the Johnson solids (J40). As the name suggests, it can be constructed by elongating a pentagonal orthocupolarotunda (J32) by inserting a decagonal prism between its halves. Rotating either the cupola or the rotunda through 36 degrees before inserting the prism yields an elongated pentagonal gyrocupolarotunda (J41).

References

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi:10.4153/cjm-1966-021-8, MR   0185507, Zbl   0132.14603 .
  2. Sapiña, R. "Area and volume of the Johnson solid J9". Problemas y ecuaciones (in Spanish). ISSN   2659-9899 . Retrieved 2020-08-30.