Gyrobifastigium

Last updated
Gyrobifastigium
Gyrobifastigium.png
Type Johnson
J25J26J27
Faces 4 triangles
4 squares
Edges 14
Vertices 8
Vertex configuration 4(3.42)
4(3.4.3.4)
Symmetry group D2d
Dual polyhedron Elongated tetragonal disphenoid
Properties convex, honeycomb
Net
Johnson solid 26 net.png
3D model of a gyrobifastigium J26 gyrobifastigium.stl
3D model of a gyrobifastigium

In geometry, the gyrobifastigium is the 26th Johnson solid (J26). It can be constructed by joining two face-regular triangular prisms along corresponding square faces, giving a quarter-turn to one prism. [1] It is the only Johnson solid that can tile three-dimensional space. [2] [3]

Contents

It is also the vertex figure of the nonuniform p-q duoantiprism (if p and q are greater than 2). Despite the fact that p, q = 3 would yield a geometrically identical equivalent to the Johnson solid, it lacks a circumscribed sphere that touches all vertices, except for the case p = 5,q = 5/3, which represents a uniform great duoantiprism.

Its dual, the elongated tetragonal disphenoid, can be found as cells of the duals of the p-q duoantiprisms.

History and name

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [4]

The name of the gyrobifastigium comes from the Latin fastigium, meaning a sloping roof. [5] In the standard naming convention of the Johnson solids, bi- means two solids connected at their bases, and gyro- means the two halves are twisted with respect to each other.

The gyrobifastigium's place in the list of Johnson solids, immediately before the bicupolas, is explained by viewing it as a digonal gyrobicupola. Just as the other regular cupolas have an alternating sequence of squares and triangles surrounding a single polygon at the top (triangle, square or pentagon), each half of the gyrobifastigium consists of just alternating squares and triangles, connected at the top only by a ridge.

Honeycomb

The gyrated triangular prismatic honeycomb can be constructed by packing together large numbers of identical gyrobifastigiums. The gyrobifastigium is one of five convex polyhedra with regular faces capable of space-filling (the others being the cube, truncated octahedron, triangular prism, and hexagonal prism) and it is the only Johnson solid capable of doing so. [2] [3]

Gyrobifastigium honeycomb.png

Cartesian coordinates

Cartesian coordinates for the gyrobifastigium with regular faces and unit edge lengths may easily be derived from the formula of the height of unit edge length

[6]

as follows:

To calculate formulae for the surface area and volume of a gyrobifastigium with regular faces and with edge length a, one may simply adapt the corresponding formulae for the triangular prism: [7]

[8]
[9]

Topologically equivalent polyhedra

The gyrobifastigium topology exists in a tetragonal disphenoid with its lateral faces divided on the plane of symmetry which with specific proportions can tessellate 3-space. Rectified A2-antiprism.png
The gyrobifastigium topology exists in a tetragonal disphenoid with its lateral faces divided on the plane of symmetry which with specific proportions can tessellate 3-space.

Schmitt–Conway–Danzer biprism

Schmitt-Conway-Danzer biprism SCD tile.svg
Schmitt–Conway–Danzer biprism

The Schmitt–Conway–Danzer biprism (also called a SCD prototile [10] ) is a polyhedron topologically equivalent to the gyrobifastigium, but with parallelogram and irregular triangle faces instead of squares and equilateral triangles. Like the gyrobifastigium, it can fill space, but only aperiodically or with a screw symmetry, not with a full three-dimensional group of symmetries. Thus, it provides a partial solution to the three-dimensional einstein problem. [11] [12]

Dual

Elongated tetragonal disphenoid
Dual gyrobifastigium.png
Type Johnson dual
Faces 8 triangles
4 parallelograms
Edges 14
Vertices 8
Symmetry group D2d
Dual polyhedron Gyrobifastigium
Net
Dual-gyrobifastigium-net.png

The dual polyhedron of the gyrobifastigium has 8 faces: 4 isosceles triangles, corresponding to the valence-3 vertices of the gyrobifastigium, and 4 parallelograms corresponding to the valence-4 equatorial vertices.

See also

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Icosidodecahedron</span> Archimedean solid with 32 faces

In geometry, an icosidodecahedron is a polyhedron with twenty (icosi) triangular faces and twelve (dodeca) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Triangular bipyramid</span> 12th Johnson solid; two tetrahedra joined along one face

In geometry, the triangular bipyramid is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Pentagonal bipyramid</span> 13th Johnson solid; two pentagonal pyramids joined at the bases

In geometry, the pentagonal bipyramid is third of the infinite set of face-transitive bipyramids, and the 13th Johnson solid. Each bipyramid is the dual of a uniform prism.

<span class="mw-page-title-main">Triangular cupola</span> 3rd Johnson solid (8 faces)

In geometry, the triangular cupola is one of the Johnson solids. It can be seen as half a cuboctahedron.

<span class="mw-page-title-main">Square cupola</span> 4th Johnson solid (10 faces)

In geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids. It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagon.

<span class="mw-page-title-main">Pentagonal cupola</span> 5th Johnson solid (12 faces)

In geometry, the pentagonal cupola is one of the Johnson solids. It can be obtained as a slice of the rhombicosidodecahedron. The pentagonal cupola consists of 5 equilateral triangles, 5 squares, 1 pentagon, and 1 decagon.

<span class="mw-page-title-main">Snub disphenoid</span> 84th Johnson solid (12 triangular faces)

In geometry, the snub disphenoid, Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron is a convex polyhedron with twelve equilateral triangles as its faces. It is not a regular polyhedron because some vertices have four faces and others have five. It is a dodecahedron, one of the eight deltahedra, and is the 84th Johnson solid. It can be thought of as a square antiprism where both squares are replaced with two equilateral triangles.

<span class="mw-page-title-main">Snub square antiprism</span> 85th Johnson solid (26 faces)

In geometry, the snub square antiprism is one of the Johnson solids . A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra. They were named by Norman Johnson, who first listed these polyhedra in 1966.

<span class="mw-page-title-main">Triangular hebesphenorotunda</span> 92nd Johnson solid (20 faces)

In geometry, the triangular hebesphenorotunda is one of the Johnson solids.

<span class="mw-page-title-main">Augmented sphenocorona</span> 87th Johnson solid (17 faces)

In geometry, the augmented sphenocorona is one of the Johnson solids, and is obtained by adding a square pyramid to one of the square faces of the sphenocorona. It is the only Johnson solid arising from "cut and paste" manipulations where the components are not all prisms, antiprisms or sections of Platonic or Archimedean solids.

<span class="mw-page-title-main">Elongated triangular pyramid</span> 7th Johnson solid (7 faces)

In geometry, the elongated triangular pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically self-dual.

<span class="mw-page-title-main">Elongated triangular bipyramid</span> 14th Johnson solid; triangular prism capped with tetrahedra

In geometry, the elongated triangular bipyramid or triakis triangular prism is one of the Johnson solids, convex polyhedra whose faces are regular polygons. As the name suggests, it can be constructed by elongating a triangular bipyramid by inserting a triangular prism between its congruent halves.

<span class="mw-page-title-main">Augmented triangular prism</span> 49th Johnson solid

In geometry, the augmented triangular prism is one of the Johnson solids. As the name suggests, it can be constructed by augmenting a triangular prism by attaching a square pyramid to one of its equatorial faces. The resulting solid bears a superficial resemblance to the gyrobifastigium, the difference being that the latter is constructed by attaching a second triangular prism, rather than a square pyramid.

<span class="mw-page-title-main">Elongated gyrobifastigium</span> Space-filling polyhedron with 8 faces

In geometry, the elongated gyrobifastigium or gabled rhombohedron is a space-filling octahedron with 4 rectangles and 4 right-angled pentagonal faces.

References

  1. Darling, David (2004), The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes, John Wiley & Sons, p. 169, ISBN   9780471667001 .
  2. 1 2 Alam, S. M. Nazrul; Haas, Zygmunt J. (2006), "Coverage and Connectivity in Three-dimensional Networks", Proceedings of the 12th Annual International Conference on Mobile Computing and Networking (MobiCom '06), New York, NY, USA: ACM, pp. 346–357, arXiv: cs/0609069 , doi:10.1145/1161089.1161128, ISBN   1-59593-286-0, S2CID   3205780 .
  3. 1 2 Kepler, Johannes (2010), The Six-Cornered Snowflake, Paul Dry Books, Footnote 18, p. 146, ISBN   9781589882850 .
  4. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics , 18: 169–200, doi:10.4153/cjm-1966-021-8, MR   0185507, Zbl   0132.14603 .
  5. Rich, Anthony (1875), "Fastigium", in Smith, William (ed.), A Dictionary of Greek and Roman Antiquities , London: John Murray, pp. 523–524.
  6. Weisstein, Eric W. "Equilateral Triangle". mathworld.wolfram.com. Retrieved 2020-04-13.
  7. Weisstein, Eric W. "Triangular Prism". mathworld.wolfram.com. Retrieved 2020-04-13.
  8. Wolfram Research, Inc. (2020). "Wolfram|Alpha Knowledgebase". Champaign, IL. PolyhedronData[{"Johnson", 26}, "SurfaceArea"]{{cite journal}}: Cite journal requires |journal= (help)
  9. Wolfram Research, Inc. (2020). "Wolfram|Alpha Knowledgebase". Champaign, IL. PolyhedronData[{"Johnson", 26}, "Volume"]{{cite journal}}: Cite journal requires |journal= (help)
  10. Forcing Nonperiodicity With a Single Tile Joshua E. S. Socolar and Joan M. Taylor, 2011
  11. Senechal, Marjorie (1996), "7.2 The SCD (Schmitt–Conway–Danzer) tile", Quasicrystals and Geometry, Cambridge University Press, pp. 209–213, ISBN   9780521575416 .
  12. Tiling Space with a Schmitt-Conway Biprism wolfram demonstrations