Einstein problem

Last updated

Aperiodic tiling with "Tile(1,1)". The tiles are colored according to their rotational orientation modulo 60 degrees. (Smith, Myers, Kaplan, and Goodman-Strauss) Aperiodic monotile tiling.png
Aperiodic tiling with "Tile(1,1)". The tiles are colored according to their rotational orientation modulo 60 degrees. (Smith, Myers, Kaplan, and Goodman-Strauss)

In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]

Contents

Several variants of the problem, depending on the particular definitions of nonperiodicity and the specifications of what sets may qualify as tiles and what types of matching rules are permitted, were solved beginning in the 1990s. The strictest version of the problem was solved in 2023 (the initial discovery was in November 2022, with a preprint published in March 2023), pending peer review.

The einstein problem can be seen as a natural extension of the second part of Hilbert's eighteenth problem, which asks for a single polyhedron that tiles Euclidean 3-space, but such that no tessellation by this polyhedron is isohedral. [3] Such anisohedral tiles were found by Karl Reinhardt in 1928, but these anisohedral tiles all tile space periodically.

Proposed solutions

In 1988, Peter Schmitt discovered a single aperiodic prototile in three-dimensional Euclidean space. While no tiling by this prototile admits a translation as a symmetry, some have a screw symmetry. The screw operation involves a combination of a translation and a rotation through an irrational multiple of π, so no number of repeated operations ever yield a pure translation. This construction was subsequently extended by John Horton Conway and Ludwig Danzer to a convex aperiodic prototile, the Schmitt–Conway–Danzer tile. The presence of the screw symmetry resulted in a reevaluation of the requirements for non-periodicity. [4] Chaim Goodman-Strauss suggested that a tiling be considered strongly aperiodic if it admits no infinite cyclic group of Euclidean motions as symmetries, and that only tile sets which enforce strong aperiodicity be called strongly aperiodic, while other sets are to be called weakly aperiodic. [5]

The Socolar-Taylor tile was proposed in 2010 as a solution to the einstein problem, but this tile is not a connected set. Socolar-Taylor tile.svg
The Socolar–Taylor tile was proposed in 2010 as a solution to the einstein problem, but this tile is not a connected set.

In 1996, Petra Gummelt constructed a decorated decagonal tile and showed that when two kinds of overlaps between pairs of tiles are allowed, the tiles can cover the plane, but only non-periodically. [6] A tiling is usually understood to be a covering with no overlaps, and so the Gummelt tile is not considered an aperiodic prototile. An aperiodic tile set in the Euclidean plane that consists of just one tile–the Socolar–Taylor tile–was proposed in early 2010 by Joshua Socolar and Joan Taylor. [7] This construction requires matching rules, rules that restrict the relative orientation of two tiles and that make reference to decorations drawn on the tiles, and these rules apply to pairs of nonadjacent tiles. Alternatively, an undecorated tile with no matching rules may be constructed, but the tile is not connected. The construction can be extended to a three-dimensional, connected tile with no matching rules, but this tile allows tilings that are periodic in one direction, and so it is only weakly aperiodic. Moreover, the tile is not simply connected.

The Hat

Smith aperiodic monotiling.svg
The tiling discovered by David Smith
Aperiodic monotile smith 2023.svg
One of the infinite family of Smith–Myers–Kaplan–Goodman-Strauss tiles. Yellow tiles are the reflected versions of the blue tiles.

In November 2022, hobbyist David Smith discovered a "hat"-shaped tile formed from eight copies of a 60°–90°–120°–90° kite, glued edge-to-edge, which seemed to only tile the plane aperiodically. [8] Smith recruited help from mathematicians Craig S. Kaplan, Joseph Samuel Myers, and Chaim Goodman-Strauss, and in March 2023 the group posted a preprint proving that the hat, when considered with its mirror image, forms an aperiodic prototile set. [9] [10] Furthermore, the hat can be generalized to an infinite family of tiles with the same aperiodic property. Their proof awaits peer review and formal publication. [11] [12]

MonotilePolygon.svg
MonotileCubicBezier.svg
MonotileQuadraticBezier.svg
Tile(1,1) from Smith, Myers, Kaplan & Goodmann-Strauss on the left. A spectre is obtained by modifying the edges of this polygon as in the middle and right example.

In May 2023 the same team (Smith, Myers, Kaplan, and Goodman-Strauss) posted a new preprint about a family of shapes, called "spectres" and related to the "hat", each of which can tile the plane using only rotations and translations. [13] Furthermore, the "spectre" tile is a "strictly chiral" aperiodic monotile: even if reflections are allowed, every tiling is non-periodic and uses only one chirality of the spectre. That is, there are no tilings of the plane that use both the spectre and its mirror image.

In 2023, a public contest run by the National Museum of Mathematics in New York City and the United Kingdom Mathematics Trust in London asked people to submit creative renditions of the Hat einstein. Out of over 245 submissions from 32 countries, three winners were chosen and received awards at a ceremony at the House of Commons. [14] [15]

See also

Related Research Articles

<span class="mw-page-title-main">Prototile</span> Basic shape(s) used in a tessellation

In mathematics, a prototile is one of the shapes of a tile in a tessellation.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Tessellation</span> Tiling of a plane in mathematics

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries.

<span class="mw-page-title-main">Aperiodic tiling</span> Form of plane tiling in mathematics

An aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types is aperiodic if copies of these tiles can form only non-periodic tilings.

<span class="mw-page-title-main">Gyrobifastigium</span> 26th Johnson solid (8 faces)

In geometry, the gyrobifastigium is the 26th Johnson solid. It can be constructed by joining two face-regular triangular prisms along corresponding square faces, giving a quarter-turn to one prism. It is the only Johnson solid that can tile three-dimensional space.

<span class="mw-page-title-main">Truncated hexagonal tiling</span>

In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex.

<span class="mw-page-title-main">Snub trihexagonal tiling</span>

In geometry, the snub hexagonal tiling is a semiregular tiling of the Euclidean plane. There are four triangles and one hexagon on each vertex. It has Schläfli symbol sr{3,6}. The snub tetrahexagonal tiling is a related hyperbolic tiling with Schläfli symbol sr{4,6}.

<span class="mw-page-title-main">Pentagonal tiling</span> A tiling of the plane by pentagons

In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon.

In geometry, a tile substitution is a method for constructing highly ordered tilings. Most importantly, some tile substitutions generate aperiodic tilings, which are tilings whose prototiles do not admit any tiling with translational symmetry. The most famous of these are the Penrose tilings. Substitution tilings are special cases of finite subdivision rules, which do not require the tiles to be geometrically rigid.

<span class="mw-page-title-main">Anisohedral tiling</span> Tiling forced to use inequivalent tile placements

In geometry, a shape is said to be anisohedral if it admits a tiling, but no such tiling is isohedral (tile-transitive); that is, in any tiling by that shape there are two tiles that are not equivalent under any symmetry of the tiling. A tiling by an anisohedral tile is referred to as an anisohedral tiling.

<span class="mw-page-title-main">Pythagorean tiling</span> Tiling by squares of two sizes

A Pythagorean tiling or two squares tessellation is a tiling of a Euclidean plane by squares of two different sizes, in which each square touches four squares of the other size on its four sides. Many proofs of the Pythagorean theorem are based on it, explaining its name. It is commonly used as a pattern for floor tiles. When used for this, it is also known as a hopscotch pattern or pinwheel pattern, but it should not be confused with the mathematical pinwheel tiling, an unrelated pattern.

<span class="mw-page-title-main">Snub trioctagonal tiling</span>

In geometry, the order-3 snub octagonal tiling is a semiregular tiling of the hyperbolic plane. There are four triangles, one octagon on each vertex. It has Schläfli symbol of sr{8,3}.

<span class="mw-page-title-main">Socolar–Taylor tile</span> Aperiodic tile

The Socolar–Taylor tile is a single non-connected tile which is aperiodic on the Euclidean plane, meaning that it admits only non-periodic tilings of the plane, with rotations and reflections of the tile allowed. It is the first known example of a single aperiodic tile, or "einstein". The basic version of the tile is a simple hexagon, with printed designs to enforce a local matching rule, regarding how the tiles may be placed. It is currently unknown whether this rule may be geometrically implemented in two dimensions while keeping the tile a connected set.

<span class="mw-page-title-main">Aperiodic set of prototiles</span>

A set of prototiles is aperiodic if copies of the prototiles can be assembled to create tilings, such that all possible tessellation patterns are non-periodic. The aperiodicity referred to is a property of the particular set of prototiles; the various resulting tilings themselves are just non-periodic.

<span class="mw-page-title-main">Chaim Goodman-Strauss</span> American mathematician

Chaim Goodman-Strauss is an American mathematician who works in convex geometry, especially aperiodic tiling. He retired from the faculty of the University of Arkansas and currently serves as outreach mathematician for the National Museum of Mathematics. He is co-author with John H. Conway and Heidi Burgiel of The Symmetries of Things, a comprehensive book surveying the mathematical theory of patterns.

<span class="mw-page-title-main">Chair tiling</span> Nonperiodic substitution tiling

In geometry, a chair tiling is a nonperiodic substitution tiling created from L-tromino prototiles. These prototiles are examples of rep-tiles and so an iterative process of decomposing the L tiles into smaller copies and then rescaling them to their original size can be used to cover patches of the plane. Chair tilings do not possess translational symmetry, i.e., they are examples of nonperiodic tilings, but the chair tiles are not aperiodic tiles since they are not forced to tile nonperiodically by themselves. The trilobite and cross tiles are aperiodic tiles that enforce the chair tiling substitution structure and these tiles have been modified to a simple aperiodic set of tiles using matching rules enforcing the same structure. Barge et al. have computed the Čech cohomology of the chair tiling and it has been shown that chair tilings can also be obtained via a cut-and-project scheme.

<span class="mw-page-title-main">Craig S. Kaplan</span> American computer scientist and mathematician

Craig S. Kaplan is a Canadian computer scientist, mathematician, and mathematical artist. He is an editor of the Journal of Mathematics and the Arts, and an organizer of the Bridges Conference on mathematics and art. He is an associate professor of computer science at the University of Waterloo, Canada.

<span class="mw-page-title-main">Ammann A1 tilings</span> Non-periodic tiling of the plane

In geometry, an Ammann A1 tiling is a tiling from the 6 piece prototile set shown on the right. They were found in 1977 by Robert Ammann. Ammann was inspired by the Robinsion tilings, which were found by Robinson in 1971. The A1 tiles are one of five sets of tiles discovered by Ammann and described in Tilings and Patterns.

<span class="mw-page-title-main">David Smith (amateur mathematician)</span> Tiling hobbyist

David Smith is an amateur mathematician and retired print technician from Bridlington, England, who is best known for his discoveries related to aperiodic monotiles that helped to solve the einstein problem.

References

  1. Two tiles have the same color when they can be brought in coincidence by the combination of a translation together with a rotation by an even multiple of 30 degrees. Tiles of different colors can be brought in coincidence by a translation together with a rotation by an odd multiple of 30 degrees.
  2. Klaassen, Bernhard (2022). "Forcing nonperiodic tilings with one tile using a seed". European Journal of Combinatorics. 100 (C): 103454. arXiv: 2109.09384 . doi:10.1016/j.ejc.2021.103454. S2CID   237571405.
  3. Senechal, Marjorie (1996) [1995]. Quasicrystals and Geometry (corrected paperback ed.). Cambridge University Press. pp. 22–24. ISBN   0-521-57541-9.
  4. Radin, Charles (1995). "Aperiodic tilings in higher dimensions". Proceedings of the American Mathematical Society . American Mathematical Society. 123 (11): 3543–3548. doi: 10.2307/2161105 . JSTOR   2161105. MR   1277129.
  5. Goodman-Strauss, Chaim (10 Jan 2000). "Open Questions in Tiling" (PDF). Archived (PDF) from the original on 2007-04-18. Retrieved 2007-03-24.
  6. Gummelt, Petra (1996). "Penrose Tilings as Coverings of Congruent Decagons". Geometriae Dedicata. 62 (1): 1–17. doi:10.1007/BF00239998. S2CID   120127686.
  7. Socolar, Joshua E. S.; Taylor, Joan M. (2011). "An Aperiodic Hexagonal Tile". Journal of Combinatorial Theory, Series A. 118 (8): 2207–2231. arXiv: 1003.4279 . doi:10.1016/j.jcta.2011.05.001. S2CID   27912253.
  8. Klarreich, Erica (4 Apr 2023). "Hobbyist Finds Math's Elusive 'Einstein' Tile". Quanta.
  9. Smith, David; Myers, Joseph Samuel; Kaplan, Craig S.; Goodman-Strauss, Chaim (Mar 2023). "An aperiodic monotile". arXiv: 2303.10798 [math.CO].
  10. Lawson-Perfect, Christian; Steckles, Katie; Rowlett, Peter (22 Mar 2023). "An aperiodic monotile exists!". The Aperiodical.
  11. Conover, Emily (24 Mar 2023). "Mathematicians have finally discovered an elusive 'einstein' tile". Science News. Retrieved 2023-03-25.
  12. Roberts, Siobhan (29 Mar 2023). "Elusive 'Einstein' Solves a Longstanding Math Problem". New York Times. Retrieved 2023-03-29.
  13. Smith, David; Myers, Joseph Samuel; Kaplan, Craig S.; Goodman-Strauss, Chaim (2023). "A chiral aperiodic monotile". arXiv: 2305.17743 [math.CO].
  14. Roberts, Siobhan (10 Dec 2023). "What Can You Do With an Einstein?". The New York Times . Retrieved 2023-12-13.
  15. "hatcontest". National Museum of Mathematics . Retrieved 2023-12-13.