List of tessellations

Last updated

Contents

This is a list of tessellations.

Spherical

Regular Spherical (n=1, 2, 3, ...)
Article Vertex configuration Schläfli symbol Image
Dihedron n2{n,2} Hexagonal dihedron.png {6,2}
Hosohedron 2n{2,n} Spherical hexagonal hosohedron2.png {2,6}
Spherical tetrahedron 33{3,3} Uniform tiling 332-t0-1-.svg
Spherical octahedron 34{3,4} Uniform tiling 432-t2.png
Spherical cube 43{4,3} Uniform tiling 432-t0.png
Spherical icosahedron 35{3,5} Uniform tiling 532-t2.png
Spherical dodecahedron 53{5,3} Uniform tiling 532-t0.png
Semi-regular Spherical (n=2, 3, ...)
Article Vertex configuration Schläfli symbol Image
Prism 4.4.nt{2, n}
= { }×{n}
Spherical hexagonal prism.svg { }×{6}
Antiprism 33.nsr{2,n}
= { }⊗{n}
Spherical hexagonal antiprism.svg { }⊗{6}
Dual semi-regular Spherical (n=2, 3, ...)
Article Vertex configuration Schläfli symbol Image
Bipyramid V42.ndt{2, n}
= { }+{n}
Spherical hexagonal bipyramid2.png { }+{6}
Trapezohedron V33.ndsr{2,n}
= { }⨁{n}
Spherical hexagonal trapezohedron.svg { }⨁{6}

Planar

Regular
ArticleVertex configurationSchläfli symbolImage
Apeirogonal hosohedron 2{2,∞} Apeirogonal hosohedron.svg
Order-2 apeirogonal tiling 2{∞,2} Apeirogonal tiling.svg
Square tiling 44{4,4} Square tiling uniform coloring 7.png
Triangular tiling 36{3,6} Uniform triangular tiling 121212.png
Hexagonal tiling 63{6,3} Uniform tiling 63-t0.svg
Semi-regular
ArticleVertex configurationSchläfli symbolImage
Apeirogonal prism 42.∞t{2,∞} Infinite prism.svg
Apeirogonal antiprism 33.∞sr{2,∞} Infinite antiprism.svg
Snub square tiling 32.4.3.4s{4,4} Uniform tiling 44-snub.png
Elongated triangular tiling 33.42{3,6}:e Elongated triangular tiling 2.png
Snub trihexagonal tiling 34.6sr{6,3} Tile 33336.svg
Rhombitrihexagonal tiling 3.4.6.4rr{6,3} Uniform tiling 63-t02.svg
Trihexagonal tiling 3.6.3.6r{6,3} Uniform tiling 63-t1.svg
Truncated hexagonal tiling 3.122t{6,3} Uniform tiling 63-t01.svg
Truncated trihexagonal tiling 4.6.12tr{6,3} Uniform tiling 63-t012.svg
Truncated square tiling 4.82tr{4,4} Uniform tiling 44-t01.svg
Dual semi-regular
ArticleFace configurationSchläfli symbolImage
Apeirogonal deltohedron V33.∞dsr{2,∞} Apeirogonal trapezohedron.svg
Apeirogonal bipyramid V42.∞dt{2,∞} Infinite bipyramid.svg
Cairo pentagonal tiling V32.4.3.4ds{4,4} 1-uniform 9 dual.svg
Prismatic pentagonal tiling V33.42d{3,6}:e 1-uniform 8 dual.svg
Floret pentagonal tiling V34.6dsr{6,3} 1-uniform 10 dual.svg
Deltoidal trihexagonal tiling V3.4.6.4drr{6,3} 1-uniform 6 dual.svg
Rhombille tiling V3.6.3.6dr{6,3} 1-uniform 7 dual.svg
Triakis triangular tiling V3.122dt{6,3} 1-uniform 4 dual.svg
Kisrhombille tiling V4.6.12dtr{6,3} 1-uniform 3 dual.svg
Tetrakis square tiling 4.82tr{4,4} 1-uniform 2 dual.svg

Hyperbolic

Hyperbolic
ArticleVertex configurationSchläfli symbolImage
Snub tetrapentagonal tiling 32.4.3.5sr{5,4} H2-5-4-snub.svg
Snub tetrahexagonal tiling 32.4.3.6sr{6,4} Uniform tiling 64-snub.png
Snub tetraheptagonal tiling 32.4.3.7sr{7,4} Uniform tiling 74-snub.png
Snub tetraoctagonal tiling 32.4.3.8sr{8,4} Uniform tiling 84-snub.png
Snub tetraapeirogonal tiling 32.4.3.∞sr{∞,4} Uniform tiling i42-snub.png
Snub pentapentagonal tiling 32.5.3.5s{5,4} Uniform tiling 552-snub.png
Snub pentahexagonal tiling 32.5.3.6sr{6,5} Uniform tiling 65-snub.png
Snub hexahexagonal tiling 32.6.3.6s{6,4} Uniform tiling 66-snub.png
Snub hexaoctagonal tiling 32.6.3.8sr{8,6} Uniform tiling 86-snub.png
Snub heptaheptagonal tiling 32.7.3.7sr{7,7} Uniform tiling 77-snub.png
Snub octaoctagonal tiling 32.8.3.8s{8,4} Uniform tiling 88-snub.png
Snub order-6 square tiling 33.4.3.4s{4,6} Uniform tiling 443-snub1.png
Snub apeiroapeirogonal tiling 32.∞.3.∞sr{∞,∞} Uniform tiling ii2-snub.png
Snub triheptagonal tiling 34.7sr{7,3} Snub triheptagonal tiling.svg
Snub trioctagonal tiling 34.8sr{8,3} H2-8-3-snub.svg
Snub triapeirogonal tiling 34.∞sr{∞,3} Uniform tiling i32-snub.png
Snub order-8 triangular tiling 35.4s{3,8} Uniform tiling 433-snub2.png
Order-7 triangular tiling 37{3,7} Order-7 triangular tiling.svg
Order-8 triangular tiling 38{3,8} H2-8-3-primal.svg
Infinite-order triangular tiling 3{3,∞}
Alternated octagonal tiling 3.4.3.4.3.4h{8,3}
Alternated order-4 hexagonal tiling 3.4.3.4.3.4.3.4h{6,4}
Quarter order-6 square tiling 3.4.62.4q{4,6}
Rhombitriheptagonal tiling 3.4.7.4rr{7,3} Rhombitriheptagonal tiling.svg
Rhombitrioctagonal tiling 3.4.8.4rr{8,3} H2-8-3-cantellated.svg
Rhombitriapeirogonal tiling 3.4.∞.4rr{∞,3}
Cantic octagonal tiling 3.6.4.6h2{8,3}
Triheptagonal tiling 3.7.3.7r{7,3} Triheptagonal tiling.svg
Trioctagonal tiling 3.8.3.8r{8,3} H2-8-3-rectified.svg
Truncated heptagonal tiling 3.142t{7,3} Truncated heptagonal tiling.svg
Truncated octagonal tiling 3.162t{8,3} H2-8-3-trunc-dual.svg
Triapeirogonal tiling3.∞.3.∞r{∞,3} H2-i-3-rectified.png
Truncated order-3 apeirogonal tiling 3.∞2t{∞,3} H2 tiling 23i-3.png
Rhombitetrapentagonal tiling 42.5.4rr{5,4} H2-5-4-cantellated.svg
Rhombitetrahexagonal tiling 42.6.4rr{6,4}
Rhombitetraheptagonal tiling 42.7.4rr{7,4}
Rhombitetraoctagonal tiling 42.8.4rr{8,4}
Rhombitetraapeirogonal tiling 42.∞.4rr{∞,4}
Order-5 square tiling 45{4,5} H2-5-4-primal.svg
Order-6 square tiling 46{4,6} H2 tiling 246-4.png
Order-7 square tiling 47{4,7}
Order-8 square tiling 48{4,8}
Infinite-order square tiling 4{4,∞}
Tetrapentagonal tiling 4.5.4.5r{5,4} H2-5-4-rectified.svg
Tetrahexagonal tiling 4.6.4.6r{6,4}
Truncated trihexagonal tiling 4.6.12tr{6,3}
Truncated triheptagonal tiling 4.6.14tr{7,3} Truncated triheptagonal tiling.svg
Order 3-7 kisrhombille V4.6.14 ??? 3-7 kisrhombille.svg
Truncated trioctagonal tiling 4.6.16tr{8,3} H2-8-3-omnitruncated.svg
Order 3-8 kisrhombille V4.6.16 ??? H2-8-3-kisrhombille.svg
Truncated triapeirogonal tiling 4.6.∞tr{∞,3}
Tetraheptagonal tiling 4.7.4.7r{7,4}
Tetraoctagonal tiling 4.8.4.8r{8,4}
Truncated tetrapentagonal tiling 4.8.10tr{5,4} H2-5-4-omnitruncated.svg
4-5 kisrhombille V4.8.10 ??? H2-5-4-kisrhombille.svg
Truncated tetrahexagonal tiling 4.8.12tr{6,4}
Truncated tetraheptagonal tiling 4.8.14tr{7,4}
Truncated tetraoctagonal tiling 4.8.16tr{8,4}
Truncated tetraapeirogonal tiling 4.8.∞tr{∞,4}
Truncated order-4 pentagonal tiling 4.102t{5,4} H2-5-4-trunc-dual.svg
Truncated pentahexagonal tiling 4.10.12tr{6,5}
Truncated order-4 hexagonal tiling 4.122t{6,4}
Truncated hexaoctagonal tiling 4.12.16tr{8,6}
Truncated order-4 heptagonal tiling 4.142t{7,4}
Truncated order-4 octagonal tiling 4.162t{8,4}
Truncated order-4 apeirogonal tiling 4.∞2t{∞,4}
Tetraapeirogonal tiling4.∞.4.∞r{∞,4}
Order-4 pentagonal tiling 54{5,4} H2-5-4-dual.svg
Order-5 pentagonal tiling 55{5,5}
Order-6 pentagonal tiling 56{5,6}
Infinite-order pentagonal tiling 5{5,∞}
Rhombipentahexagonal tiling 5.4.6.4rr{6,5}
Pentahexagonal tiling 5.6.5.6r{6,5}
Truncated order-5 square tiling 5.82t{4,5} H2-5-4-trunc-primal.svg
Truncated order-5 pentagonal tiling 5.102t{5,5}
Truncated order-5 hexagonal tiling 5.122t{6,5}
Pentaapeirogonal tiling5.∞.5.∞r{∞,5}
Order-4 hexagonal tiling 64{6,4}
Order-5 hexagonal tiling 65{6,5}
Order-6 hexagonal tiling 66{6,6}
Order-8 hexagonal tiling 68{6,8}
Rhombihexaoctagonal tiling 6.4.8.4rr{8,6}
Hexaoctagonal tiling 6.8.6.8r{8,6}
Truncated order-6 square tiling 6.82t{4,6}
Truncated order-6 pentagonal tiling 6.102t{5,6}
Truncated order-6 hexagonal tiling 6.122t{6,6}
Truncated order-6 octagonal tiling 6.162t{8,6}
Heptagonal tiling 73{7,3} Heptagonal tiling.svg
Order-4 heptagonal tiling 74{7,4}
Order-7 heptagonal tiling 77{7,7}
Truncated order-7 triangular tiling 7.62t{3,7} Truncated order-7 triangular tiling.svg
Truncated order-7 square tiling 7.82t{4,7}
Truncated order-7 heptagonal tiling 7.142t{7,7}
Octagonal tiling 83{8,3} H2-8-3-dual.svg
Order-4 octagonal tiling 84{8,4}
Order-6 octagonal tiling 86{8,6}
Order-8 octagonal tiling 88{8,8}
Truncated order-8 hexagonal tiling 812t{6,8}
Truncated order-8 triangular tiling 8.62t{3,8} H2-8-3-trunc-primal.svg
Truncated order-8 octagonal tiling 8.162t{8,8}
Order-7 heptagrammic tiling (7/2)7{7/2,7}
Order-3 apeirogonal tiling 3{∞,3} H2-I-3-dual.svg
Order-4 apeirogonal tiling 4{∞,4}
Order-5 apeirogonal tiling 5{∞,5}
Infinite-order apeirogonal tiling {∞,∞}
Truncated infinite-order triangular tiling ∞.62t{3,∞}
Truncated infinite-order square tiling ∞.82t{4,∞}

See also

Related Research Articles

<span class="mw-page-title-main">Convex uniform honeycomb</span> Spatial tiling of convex uniform polyhedra

In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.

In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

<span class="mw-page-title-main">Euclidean tilings by convex regular polygons</span> Subdivision of the plane into polygons that are all regular

Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his Harmonices Mundi.

<span class="mw-page-title-main">Hexagonal tiling</span> Regular tiling of a two-dimensional space

In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} .

<span class="mw-page-title-main">Square tiling</span> Regular tiling of the Euclidean plane

In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille.

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Wythoff symbol</span> Notation for tesselations

In geometry, the Wythoff symbol is a notation representing a Wythoff construction of a uniform polyhedron or plane tiling within a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra. Later the Coxeter diagram was developed to mark uniform polytopes and honeycombs in n-dimensional space within a fundamental simplex.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as n-honeycomb for an n-dimensional honeycomb.

<span class="mw-page-title-main">Tetrahexagonal tiling</span>

In geometry, the tetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol r{6,4}.

<span class="mw-page-title-main">Truncated order-6 square tiling</span>

In geometry, the truncated order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,6}.

<span class="mw-page-title-main">Snub tetrahexagonal tiling</span>

In geometry, the snub tetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{6,4}.

<span class="mw-page-title-main">Snub tetrapentagonal tiling</span>

In geometry, the snub tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{5,4}.

<span class="mw-page-title-main">Rhombitetraoctagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the rhombitetraoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{8,4}. It can be seen as constructed as a rectified tetraoctagonal tiling, r{8,4}, as well as an expanded order-4 octagonal tiling or expanded order-8 square tiling.

<span class="mw-page-title-main">Truncated order-3 apeirogonal tiling</span>

In geometry, the truncated order-3 apeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of t{∞,3}.

<span class="mw-page-title-main">Rhombitriapeirogonal tiling</span>

In geometry, the rhombtriapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of rr{∞,3}.

<span class="mw-page-title-main">Rhombitetraapeirogonal tiling</span> Uniform tiling of the hyperbolic plane

In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.

<span class="mw-page-title-main">Snub tetraapeirogonal tiling</span>

In geometry, the snub tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{∞,4}.

<span class="mw-page-title-main">Rhombipentahexagonal tiling</span> Uniform tiling of the hyperbolic plane in geometry

In geometry, the rhombipentahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,2{6,5}.

References