List of tessellations

Last updated

See also

Related Research Articles

In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.

<span class="mw-page-title-main">Euclidean tilings by convex regular polygons</span> Subdivision of the plane into polygons that are all regular

Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his Harmonices Mundi.

<span class="mw-page-title-main">Hexagonal tiling</span> Regular tiling of a two-dimensional space

In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} .

<span class="mw-page-title-main">Square tiling</span> Regular tiling of the Euclidean plane

In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille.

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Wythoff symbol</span> Notation for tesselations

In geometry, the Wythoff symbol is a notation representing a Wythoff construction of a uniform polyhedron or plane tiling within a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra. Later the Coxeter diagram was developed to mark uniform polytopes and honeycombs in n-dimensional space within a fundamental simplex.

<span class="mw-page-title-main">Truncated triheptagonal tiling</span> Semiregular tiling of the hyperbolic plane

In geometry, the truncated triheptagonal tiling is a semiregular tiling of the hyperbolic plane. There is one square, one hexagon, and one tetradecagon (14-sides) on each vertex. It has Schläfli symbol of tr{7,3}.

In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive.

In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as n-honeycomb for an n-dimensional honeycomb.

<span class="mw-page-title-main">Tetrahexagonal tiling</span>

In geometry, the tetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol r{6,4}.

<span class="mw-page-title-main">Rhombitetraoctagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the rhombitetraoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{8,4}. It can be seen as constructed as a rectified tetraoctagonal tiling, r{8,4}, as well as an expanded order-4 octagonal tiling or expanded order-8 square tiling.

<span class="mw-page-title-main">Snub tetraoctagonal tiling</span>

In geometry, the snub tetraoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{8,4}.

<span class="mw-page-title-main">Truncated order-3 apeirogonal tiling</span>

In geometry, the truncated order-3 apeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of t{∞,3}.

<span class="mw-page-title-main">Truncated infinite-order triangular tiling</span>

In geometry, the truncated infinite-order triangular tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of t{3,∞}.

<span class="mw-page-title-main">Rhombitriapeirogonal tiling</span>

In geometry, the rhombtriapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of rr{∞,3}.

<span class="mw-page-title-main">Rhombitetraapeirogonal tiling</span> Uniform tiling of the hyperbolic plane

In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.

<span class="mw-page-title-main">Pentahexagonal tiling</span>

In geometry, the pentahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of r{6,5} or t1{6,5}.

<span class="mw-page-title-main">Rhombipentahexagonal tiling</span> Uniform tiling of the hyperbolic plane in geometry

In geometry, the rhombipentahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,2{6,5}.

<span class="mw-page-title-main">Hexaoctagonal tiling</span>

In geometry, the hexaoctagonal tiling is a uniform tiling of the hyperbolic plane.