Hexaoctagonal tiling

Last updated
hexaoctagonal tiling
H2 tiling 268-2.png
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration (6.8)2
Schläfli symbol r{8,6} or
Wythoff symbol 2 | 8 6
Coxeter diagram CDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.png
Symmetry group [8,6], (*862)
Dual Order-8-6 quasiregular rhombic tiling
Properties Vertex-transitive edge-transitive

In geometry, the hexaoctagonal tiling is a uniform tiling of the hyperbolic plane.

Contents

Constructions

There are four uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,6] kaleidoscope. Removing the mirror between the order 2 and 4 points, [8,6,1+], gives [(8,8,3)], (*883). Removing the mirror between the order 2 and 8 points, [1+,8,6], gives [(4,6,6)], (*664). Removing two mirrors as [8,1+,6,1+], leaves remaining mirrors (*4343).

Four uniform constructions of 6.8.6.8
Uniform
Coloring
H2 tiling 268-2.png H2 tiling 388-5.png H2 tiling 466-5.png
Symmetry [8,6]
(*862)
CDel node c3.pngCDel 8.pngCDel node c1.pngCDel 6.pngCDel node c2.png
[(8,3,8)] = [8,6,1+]
(*883)
CDel node c3.pngCDel split1-88.pngCDel branch c1.png
[(6,4,6)] = [1+,8,6]
(*664)
CDel label4.pngCDel branch c1.pngCDel split2-66.pngCDel node c2.png
[1+,8,6,1+]
(*4343)
CDel branch c1.pngCDel 4a4b-cross.pngCDel branch c1.png
Symbolr{8,6}r{(8,3,8)}r{(6,4,6)}
Coxeter
diagram
CDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node h0.png = CDel node.pngCDel split1-88.pngCDel branch 11.pngCDel node h0.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.png = CDel branch 11.pngCDel split2-66.pngCDel node.pngCDel node h0.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node h0.png =
CDel branch 11.pngCDel 4a4b-cross.pngCDel branch 11.png

Symmetry

The dual tiling has face configuration V6.8.6.8, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*4343), shown here. Adding a 2-fold gyration point at the center of each rhombi defines a (2*43) orbifold. These are subsymmetries of [8,6].

862 symmetry z0z.png
[1+,8,4,1+], (*4343)
862 symmetry b0b.png
[(8,4,2+)], (2*43)
Uniform octagonal/hexagonal tilings
Symmetry: [8,6], (*862)
CDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.pngCDel node 1.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node 1.pngCDel 8.pngCDel node 1.pngCDel 6.pngCDel node 1.png
H2 tiling 268-1.png H2 tiling 268-3.png H2 tiling 268-2.png H2 tiling 268-6.png H2 tiling 268-4.png H2 tiling 268-5.png H2 tiling 268-7.png
{8,6} t{8,6}
r{8,6} 2t{8,6}=t{6,8} 2r{8,6}={6,8} rr{8,6} tr{8,6}
Uniform duals
CDel node f1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node f1.pngCDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node f1.pngCDel node f1.pngCDel 8.pngCDel node f1.pngCDel 6.pngCDel node f1.png
H2chess 268b.png H2chess 268f.png H2chess 268a.png H2chess 268e.png H2chess 268c.png H2chess 268d.png H2checkers 268.png
V86V6.16.16V(6.8)2V8.12.12V68V4.6.4.8V4.12.16
Alternations
[1+,8,6]
(*466)
[8+,6]
(8*3)
[8,1+,6]
(*4232)
[8,6+]
(6*4)
[8,6,1+]
(*883)
[(8,6,2+)]
(2*43)
[8,6]+
(862)
CDel node h1.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node h.pngCDel node h.pngCDel 8.pngCDel node h.pngCDel 6.pngCDel node h.png
H2 tiling 466-1.png H2 tiling 388-1.png Uniform tiling 86-snub.png
h{8,6}s{8,6}hr{8,6}s{6,8}h{6,8}hrr{8,6} sr{8,6}
Alternation duals
CDel node fh.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node.pngCDel node.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node fh.pngCDel node.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node.pngCDel 6.pngCDel node fh.pngCDel node fh.pngCDel 8.pngCDel node fh.pngCDel 6.pngCDel node fh.png
H2chess 466b.png
V(4.6)6V3.3.8.3.8.3V(3.4.4.4)2V3.4.3.4.3.6V(3.8)8V3.45V3.3.6.3.8
Symmetry mutation of quasiregular tilings: 6.n.6.n
Symmetry
*6n2
[n,6]
Euclidean Compact hyperbolicParacompactNoncompact
*632
[3,6]
*642
[4,6]
*652
[5,6]
*662
[6,6]
*762
[7,6]
*862
[8,6]...
*62
[,6]
 
[iπ/λ,6]
Quasiregular
figures
configuration
Uniform tiling 63-t1.svg
6.3.6.3
H2 tiling 246-2.png
6.4.6.4
H2 tiling 256-2.png
6.5.6.5
H2 tiling 266-2.png
6.6.6.6
H2 tiling 267-2.png
6.7.6.7
H2 tiling 268-2.png
6.8.6.8
H2 tiling 26i-2.png
6..6.

6..6.
Dual figures
Rhombic
figures
configuration
Rhombic star tiling.png
V6.3.6.3
H2chess 246a.png
V6.4.6.4
Order-6-5 quasiregular rhombic tiling.png
V6.5.6.5
H2 tiling 246-4.png
V6.6.6.6

V6.7.6.7
H2chess 268a.png
V6.8.6.8
H2chess 26ia.png
V6..6.
Dimensional family of quasiregular polyhedra and tilings: (8.n)2
Symmetry
*8n2
[n,8]
Hyperbolic...ParacompactNoncompact
*832
[3,8]
*842
[4,8]
*852
[5,8]
*862
[6,8]
*872
[7,8]
*882
[8,8]...
*82
[,8]
 
[iπ/λ,8]
Coxeter CDel node.pngCDel 3.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 7.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel infin.pngCDel node 1.pngCDel 8.pngCDel node.pngCDel node.pngCDel ultra.pngCDel node 1.pngCDel 8.pngCDel node.png
Quasiregular
figures
configuration
H2-8-3-rectified.svg
3.8.3.8
H2 tiling 248-2.png
4.8.4.8
H2 tiling 258-2.png
8.5.8.5
H2 tiling 268-2.png
8.6.8.6
H2 tiling 278-2.png
8.7.8.7
H2 tiling 288-2.png
8.8.8.8
H2 tiling 25i-2.png
8..8.
 
8..8.

See also

Related Research Articles

<span class="mw-page-title-main">Order-4 pentagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the order-4 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {5,4}. It can also be called a pentapentagonal tiling in a bicolored quasiregular form.

<span class="mw-page-title-main">Order-4 hexagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the order-4 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,4}.

<span class="mw-page-title-main">Truncated tetrahexagonal tiling</span>

In geometry, the truncated tetrahexagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one dodecagon on each vertex. It has Schläfli symbol of tr{6,4}.

<span class="mw-page-title-main">Tetrahexagonal tiling</span>

In geometry, the tetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol r{6,4}.

<span class="mw-page-title-main">Rhombitetrahexagonal tiling</span>

In geometry, the rhombitetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{6,4}. It can be seen as constructed as a rectified tetrahexagonal tiling, r{6,4}, as well as an expanded order-4 hexagonal tiling or expanded order-6 square tiling.

<span class="mw-page-title-main">Truncated order-4 hexagonal tiling</span>

In geometry, the truncated order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{6,4}. A secondary construction tr{6,6} is called a truncated hexahexagonal tiling with two colors of dodecagons.

<span class="mw-page-title-main">Truncated order-6 square tiling</span>

In geometry, the truncated order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,6}.

<span class="mw-page-title-main">Truncated tetrapentagonal tiling</span> A uniform tiling of the hyperbolic plane

In geometry, the truncated tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1,2{4,5} or tr{4,5}.

<span class="mw-page-title-main">Order-6 hexagonal tiling</span>

In geometry, the order-6 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,6} and is self-dual.

<span class="mw-page-title-main">Order-4 heptagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the order-4 heptagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {7,4}.

<span class="mw-page-title-main">Order-4 octagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the order-4 octagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {8,4}. Its checkerboard coloring can be called a octaoctagonal tiling, and Schläfli symbol of r{8,8}.

<span class="mw-page-title-main">Truncated order-4 octagonal tiling</span>

In geometry, the truncated order-4 octagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{8,4}. A secondary construction t0,1,2{8,8} is called a truncated octaoctagonal tiling with two colors of hexakaidecagons.

<span class="mw-page-title-main">Tetraoctagonal tiling</span>

In geometry, the tetraoctagonal tiling is a uniform tiling of the hyperbolic plane.

<span class="mw-page-title-main">Order-8 square tiling</span>

In geometry, the order-8 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,8}.

<span class="mw-page-title-main">Order-8 octagonal tiling</span>

In geometry, the order-8 octagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {8,8} and is self-dual.

<span class="mw-page-title-main">Order-6 pentagonal tiling</span> Regular tiling of the hyperbolic plane

In geometry, the order-6 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {5,6}.

<span class="mw-page-title-main">Order-6 octagonal tiling</span>

In geometry, the order-6 octagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {8,6}.

<span class="mw-page-title-main">Truncated hexaoctagonal tiling</span>

In geometry, the truncated hexaoctagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one dodecagon, and one hexakaidecagon on each vertex. It has Schläfli symbol of tr{8,6}.

<span class="mw-page-title-main">Order-8 hexagonal tiling</span>

In geometry, the order-8 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,8}.

<span class="mw-page-title-main">Truncated order-8 hexagonal tiling</span> Semiregular tiling of the hyperbolic plane

In geometry, the truncated order-8 hexagonal tiling is a semiregular tiling of the hyperbolic plane. It has Schläfli symbol of t{6,8}.

References