Sphinx tiling

Last updated
Four 'sphinx' hexiamonds can be put together to form another sphinx. Self-replication of sphynx hexidiamonds.svg
Four 'sphinx' hexiamonds can be put together to form another sphinx.

In geometry, the sphinx tiling is a tessellation of the plane using the "sphinx", a pentagonal hexiamond formed by gluing six equilateral triangles together. The resultant shape is named for its reminiscence to the Great Sphinx at Giza. A sphinx can be dissected into any square number of copies of itself, [1] some of them mirror images, and repeating this process leads to a non-periodic tiling of the plane. The sphinx is therefore a rep-tile (a self-replicating tessellation). [2] It is one of few known pentagonal rep-tiles and is the only known pentagonal rep-tile whose sub-copies are equal in size. [3]

Contents

Sphinx4.gif
Dissection of the sphinx into four sub-copies
Sphinx9.gif
Dissection of the sphinx into nine sub-copies

General tilings

An outer boundary ("frame") in the shape of a sphinx can also be tiled in a non-recursive way for all orders. We define the order of a sphinx frame on a triangular lattice by the number of triangles at the "tail" end. An order-2 frame can be tiled by four sphinxes in exactly one way (as shown in the figure), an order-3 frame can be tiled by 9 sphinxes in 4 ways, etc. The number of tilings grows exponentially as with the order of the frame, where [4]

See also

Related Research Articles

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Tessellation</span> Tiling of a plane in mathematics

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries.

<span class="mw-page-title-main">Discrete geometry</span> Branch of geometry that studies combinatorial properties and constructive methods

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

<span class="mw-page-title-main">Klein quartic</span> Compact Riemann surface of genus 3

In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus 3 with the highest possible order automorphism group for this genus, namely order 168 orientation-preserving automorphisms, and 168 × 2 = 336 automorphisms if orientation may be reversed. As such, the Klein quartic is the Hurwitz surface of lowest possible genus; see Hurwitz's automorphisms theorem. Its (orientation-preserving) automorphism group is isomorphic to PSL(2, 7), the second-smallest non-abelian simple group after the alternating group A5. The quartic was first described in (Klein 1878b).

<span class="mw-page-title-main">Aperiodic tiling</span> Form of plane tiling without repeats at scale

An aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types is aperiodic if copies of these tiles can form only non-periodic tilings.

<span class="mw-page-title-main">Euclidean tilings by convex regular polygons</span> Subdivision of the plane into polygons that are all regular

Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his Harmonices Mundi.

<span class="mw-page-title-main">Heesch's problem</span> On surrounding polygons by layers of copies

In geometry, the Heesch number of a shape is the maximum number of layers of copies of the same shape that can surround it with no overlaps and no gaps. Heesch's problem is the problem of determining the set of numbers that can be Heesch numbers. Both are named for geometer Heinrich Heesch, who found a tile with Heesch number 1 and proposed the more general problem.

<span class="mw-page-title-main">Schwarz triangle</span> Spherical triangle that can be used to tile a sphere

In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere, possibly overlapping, through reflections in its edges. They were classified in Schwarz (1873).

<span class="mw-page-title-main">Elongated triangular tiling</span>

In geometry, the elongated triangular tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. It is named as a triangular tiling elongated by rows of squares, and given Schläfli symbol {3,6}:e.

<span class="mw-page-title-main">Cairo pentagonal tiling</span> Tiling of the plane by pentagons

In geometry, a Cairo pentagonal tiling is a tessellation of the Euclidean plane by congruent convex pentagons, formed by overlaying two tessellations of the plane by hexagons and named for its use as a paving design in Cairo. It is also called MacMahon's net after Percy Alexander MacMahon, who depicted it in his 1921 publication New Mathematical Pastimes. John Horton Conway called it a 4-fold pentille.

<span class="mw-page-title-main">Pentagonal tiling</span> A tiling of the plane by pentagons

In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon.

In geometry, pinwheel tilings are non-periodic tilings defined by Charles Radin and based on a construction due to John Conway. They are the first known non-periodic tilings to each have the property that their tiles appear in infinitely many orientations.

<span class="mw-page-title-main">Penrose tiling</span> Non-periodic tiling of the plane

A Penrose tiling is an example of an aperiodic tiling. Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches. However, despite their lack of translational symmetry, Penrose tilings may have both reflection symmetry and fivefold rotational symmetry. Penrose tilings are named after mathematician and physicist Roger Penrose, who investigated them in the 1970s.

<span class="mw-page-title-main">Rep-tile</span> Shape subdivided into copies of itself

In the geometry of tessellations, a rep-tile or reptile is a shape that can be dissected into smaller copies of the same shape. The term was coined as a pun on animal reptiles by recreational mathematician Solomon W. Golomb and popularized by Martin Gardner in his "Mathematical Games" column in the May 1963 issue of Scientific American. In 2012 a generalization of rep-tiles called self-tiling tile sets was introduced by Lee Sallows in Mathematics Magazine.

<i>Circle Limit III</i> 1959 woodcut by M. C. Escher

Circle Limit III is a woodcut made in 1959 by Dutch artist M. C. Escher, in which "strings of fish shoot up like rockets from infinitely far away" and then "fall back again whence they came".

<span class="mw-page-title-main">Aperiodic set of prototiles</span> Set of tile shapes that can create nonrepeating patterns

A set of prototiles is aperiodic if copies of the prototiles can be assembled to create tilings, such that all possible tessellation patterns are non-periodic. The aperiodicity referred to is a property of the particular set of prototiles; the various resulting tilings themselves are just non-periodic.

<span class="mw-page-title-main">Self-tiling tile set</span>

A self-tiling tile set, or setiset, of order n is a set of n shapes or pieces, usually planar, each of which can be tiled with smaller replicas of the complete set of n shapes. That is, the n shapes can be assembled in n different ways so as to create larger copies of themselves, where the increase in scale is the same in each case. Figure 1 shows an example for n = 4 using distinctly shaped decominoes. The concept can be extended to include pieces of higher dimension. The name setisets was coined by Lee Sallows in 2012, but the problem of finding such sets for n = 4 was asked decades previously by C. Dudley Langford, and examples for polyaboloes and polyominoes were previously published by Gardner.

<span class="mw-page-title-main">Planigon</span> Convex polygon which can tile the plane by itself

In geometry, a planigon is a convex polygon that can fill the plane with only copies of itself. In the Euclidean plane there are 3 regular planigons; equilateral triangle, squares, and regular hexagons; and 8 semiregular planigons; and 4 demiregular planigons which can tile the plane only with other planigons.

<span class="mw-page-title-main">Binary tiling</span> Tiling of the hyperbolic plane

In geometry, the binary tiling is a tiling of the hyperbolic plane, resembling a quadtree over the Poincaré half-plane model of the hyperbolic plane. It was first studied mathematically in 1974 by Károly Böröczky.

References

  1. Niţică, Viorel (2003), "Rep-tiles revisited", MASS selecta, Providence, RI: American Mathematical Society, pp. 205–217, MR   2027179 .
  2. Godrèche, C. (1989), "The sphinx: a limit-periodic tiling of the plane", Journal of Physics A: Mathematical and General, 22 (24): L1163–L1166, doi:10.1088/0305-4470/22/24/006, MR   1030678
  3. Martin, Andy (2003), "The sphinx task centre problem", in Pritchard, Chris (ed.), The Changing Shape of Geometry, MAA Spectrum, Cambridge University Press, pp. 371–378, ISBN   9780521531627
  4. Huber, Greg; Knecht, Craig; Trump, Walter; Ziff, Robert M. (2024). "Entropy and chirality in sphinx tilings". Physical Review Research. 6 (1). arXiv: 2304.14388 . doi:10.1103/PhysRevResearch.6.013227. ISSN   2643-1564.}}