In geometry, a tessellation of dimension 2 (a plane tiling) or higher, or a polytope of dimension 3 (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive, i.e. must lie within the same symmetry orbit . In other words, for any two faces A and B, there must be a symmetry of the entire figure by translations, rotations, and/or reflections that maps A onto B. For this reason, convex isohedral polyhedra are the shapes that will make fair dice. [1]
Isohedral polyhedra are called isohedra. They can be described by their face configuration. An isohedron has an even number of faces.
The dual of an isohedral polyhedron is vertex-transitive, i.e. isogonal. The Catalan solids, the bipyramids, and the trapezohedra are all isohedral. They are the duals of the (isogonal) Archimedean solids, prisms, and antiprisms, respectively. The Platonic solids, which are either self-dual or dual with another Platonic solid, are vertex-, edge-, and face-transitive (i.e. isogonal, isotoxal, and isohedral).
A form that is isohedral, has regular vertices, and is also edge-transitive (i.e. isotoxal) is said to be a quasiregular dual. Some theorists regard these figures as truly quasiregular because they share the same symmetries, but this is not generally accepted.
A polyhedron which is isohedral and isogonal is said to be noble.
Not all isozonohedra [2] are isohedral. [3] For example, a rhombic icosahedron is an isozonohedron but not an isohedron. [4]
Convex | Concave | ||
---|---|---|---|
Hexagonal bipyramids, V4.4.6, are nonregular isohedral polyhedra. | The Cairo pentagonal tiling, V3.3.4.3.4, is isohedral. | The rhombic dodecahedral honeycomb is isohedral (and isochoric, and space-filling). | A square tiling distorted into a spiraling H tiling (topologically equivalent) is still isohedral. |
Faces | Face config. | Class | Name | Symmetry | Order | Convex | Coplanar | Nonconvex |
---|---|---|---|---|---|---|---|---|
4 | V33 | Platonic | tetrahedron tetragonal disphenoid rhombic disphenoid | Td, [3,3], (*332) D2d, [2+,2], (2*) D2, [2,2]+, (222) | 24 4 4 4 | |||
6 | V34 | Platonic | cube trigonal trapezohedron asymmetric trigonal trapezohedron | Oh, [4,3], (*432) D3d, [2+,6] (2*3) D3 [2,3]+, (223) | 48 12 12 6 | |||
8 | V43 | Platonic | octahedron square bipyramid rhombic bipyramid square scalenohedron | Oh, [4,3], (*432) D4h,[2,4],(*224) D2h,[2,2],(*222) D2d,[2+,4],(2*2) | 48 16 8 8 | |||
12 | V35 | Platonic | regular dodecahedron pyritohedron tetartoid | Ih, [5,3], (*532) Th, [3+,4], (3*2) T, [3,3]+, (*332) | 120 24 12 | |||
20 | V53 | Platonic | regular icosahedron | Ih, [5,3], (*532) | 120 | |||
12 | V3.62 | Catalan | triakis tetrahedron | Td, [3,3], (*332) | 24 | |||
12 | V(3.4)2 | Catalan | rhombic dodecahedron deltoidal dodecahedron | Oh, [4,3], (*432) Td, [3,3], (*332) | 48 24 | |||
24 | V3.82 | Catalan | triakis octahedron | Oh, [4,3], (*432) | 48 | |||
24 | V4.62 | Catalan | tetrakis hexahedron | Oh, [4,3], (*432) | 48 | |||
24 | V3.43 | Catalan | deltoidal icositetrahedron | Oh, [4,3], (*432) | 48 | |||
48 | V4.6.8 | Catalan | disdyakis dodecahedron | Oh, [4,3], (*432) | 48 | |||
24 | V34.4 | Catalan | pentagonal icositetrahedron | O, [4,3]+, (432) | 24 | |||
30 | V(3.5)2 | Catalan | rhombic triacontahedron | Ih, [5,3], (*532) | 120 | |||
60 | V3.102 | Catalan | triakis icosahedron | Ih, [5,3], (*532) | 120 | |||
60 | V5.62 | Catalan | pentakis dodecahedron | Ih, [5,3], (*532) | 120 | |||
60 | V3.4.5.4 | Catalan | deltoidal hexecontahedron | Ih, [5,3], (*532) | 120 | |||
120 | V4.6.10 | Catalan | disdyakis triacontahedron | Ih, [5,3], (*532) | 120 | |||
60 | V34.5 | Catalan | pentagonal hexecontahedron | I, [5,3]+, (532) | 60 | |||
2n | V33.n | Polar | trapezohedron asymmetric trapezohedron | Dnd, [2+,2n], (2*n) Dn, [2,n]+, (22n) | 4n 2n | | ||
2n 4n | V42.n V42.2n V42.2n | Polar | regular n-bipyramid isotoxal 2n-bipyramid 2n-scalenohedron | Dnh, [2,n], (*22n) Dnh, [2,n], (*22n) Dnd, [2+,2n], (2*n) | 4n |
A polyhedron (or polytope in general) is k-isohedral if it contains k faces within its symmetry fundamental domains. [5] Similarly, a k-isohedral tiling has k separate symmetry orbits (it may contain m different face shapes, for m = k, or only for some m < k). [6] ("1-isohedral" is the same as "isohedral".)
A monohedral polyhedron or monohedral tiling (m = 1) has congruent faces, either directly or reflectively, which occur in one or more symmetry positions. An m-hedral polyhedron or tiling has m different face shapes ("dihedral", "trihedral"... are the same as "2-hedral", "3-hedral"... respectively). [7]
Here are some examples of k-isohedral polyhedra and tilings, with their faces colored by their k symmetry positions:
3-isohedral | 4-isohedral | isohedral | 2-isohedral |
---|---|---|---|
2-hedral regular-faced polyhedra | Monohedral polyhedra | ||
The rhombicuboctahedron has 1 triangle type and 2 square types. | The pseudo-rhombicuboctahedron has 1 triangle type and 3 square types. | The deltoidal icositetrahedron has 1 face type. | The pseudo-deltoidal icositetrahedron has 2 face types, with same shape. |
2-isohedral | 4-isohedral | Isohedral | 3-isohedral |
---|---|---|---|
2-hedral regular-faced tilings | Monohedral tilings | ||
The Pythagorean tiling has 2 square types (sizes). | This 3-uniform tiling has 3 triangle types, with same shape, and 1 square type. | The herringbone pattern has 1 rectangle type. | This pentagonal tiling has 3 irregular pentagon types, with same shape. |
A cell-transitive or isochoric figure is an n-polytope (n ≥ 4) or n-honeycomb (n ≥ 3) that has its cells congruent and transitive with each others. In 3 dimensions, the catoptric honeycombs, duals to the uniform honeycombs, are isochoric. In 4 dimensions, isochoric polytopes have been enumerated up to 20 cells. [8]
A facet-transitive or isotopic figure is an n-dimensional polytope or honeycomb with its facets ((n−1)-faces) congruent and transitive. The dual of an isotope is an isogonal polytope. By definition, this isotopic property is common to the duals of the uniform polytopes.
In geometry, a bipyramid, dipyramid, or double pyramid is a polyhedron formed by fusing two pyramids together base-to-base. The polygonal base of each pyramid must therefore be the same, and unless otherwise specified the base vertices are usually coplanar and a bipyramid is usually symmetric, meaning the two pyramids are mirror images across their common base plane. When each apex of the bipyramid is on a line perpendicular to the base and passing through its center, it is a right bipyramid; otherwise it is oblique. When the base is a regular polygon, the bipyramid is also called regular.
In geometry, a cube is a three-dimensional solid object bounded by six square faces. It has twelve edges and eight vertices. It can be represented as a rectangular cuboid with six square faces, or a parallelepiped with equal edges. It is an example of many type of solids: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron.
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.
In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex.
In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.
In geometry, a polytope or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.
In geometry, an n-gonaltrapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron, is the dual polyhedron of an n-gonal antiprism. The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites. With a higher symmetry, its 2n faces are kites.
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
In geometry, the term semiregular polyhedron is used variously by different authors.
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular, quasi-regular, or semi-regular. The faces and vertices don't need to be convex, so many of the uniform polyhedra are also star polyhedra.
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} .
In geometry, a hexagonal trapezohedron or deltohedron is the fourth in an infinite series of trapezohedra which are dual polyhedra to the antiprisms. It has twelve faces which are congruent kites. It can be described by the Conway notation dA6.
In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.
In geometry, a polytope or a tiling is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other while leaving the region occupied by the object unchanged.
In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.
In geometry, a skew apeirohedron is an infinite skew polyhedron consisting of nonplanar faces or nonplanar vertex figures, allowing the figure to extend indefinitely without folding round to form a closed surface.
In geometry, a plesiohedron is a special kind of space-filling polyhedron, defined as the Voronoi cell of a symmetric Delone set. Three-dimensional Euclidean space can be completely filled by copies of any one of these shapes, with no overlaps. The resulting honeycomb will have symmetries that take any copy of the plesiohedron to any other copy.