Pentakis dodecahedron

Last updated
Pentakis dodecahedron
Pentakisdodecahedron.jpg
(Click here for rotating model)
Type Catalan solid
Coxeter diagram CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 5.pngCDel node.png
Conway notation kD
Face type V5.6.6
DU25 facets.png

isosceles triangle
Faces60
Edges90
Vertices32
Vertices by type20{6}+12{5}
Symmetry group Ih, H3, [5,3], (*532)
Rotation group I, [5,3]+, (532)
Dihedral angle 156°43′07″
arccos(−80 + 9√5/109)
Propertiesconvex, face-transitive
Truncated icosahedron.png
Truncated icosahedron
(dual polyhedron)
Pentakisdodecahedron net.png
Net
3D model of a pentakis dodecahedron Pentakis dodecahedron.stl
3D model of a pentakis dodecahedron

In geometry, a pentakis dodecahedron or kisdodecahedron is a polyhedron created by attaching a pentagonal pyramid to each face of a regular dodecahedron; that is, it is the Kleetope of the dodecahedron. Specifically, the term typically refers to a particular Catalan solid, namely the dual of a truncated icosahedron.

Contents

Cartesian coordinates

Let be the golden ratio. The 12 points given by and cyclic permutations of these coordinates are the vertices of a regular icosahedron. Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the points together with the points and cyclic permutations of these coordinates. Multiplying all coordinates of the icosahedron by a factor of gives a slightly smaller icosahedron. The 12 vertices of this icosahedron, together with the vertices of the dodecahedron, are the vertices of a pentakis dodecahedron centered at the origin. The length of its long edges equals . Its faces are acute isosceles triangles with one angle of and two of . The length ratio between the long and short edges of these triangles equals .

Chemistry

C60-cpk.png
The pentakis dodecahedron in a model of buckminsterfullerene: each (spherical) surface segment represents a carbon atom, and if all are replaced with planar faces, a pentakis dodecahedron is produced. Equivalently, a truncated icosahedron is a model of buckminsterfullerene, with each vertex representing a carbon atom.

Biology

The pentakis dodecahedron is also a model of some icosahedrally symmetric viruses, such as Adeno-associated virus. These have 60 symmetry related capsid proteins, which combine to make the 60 symmetrical faces of a pentakis dodecahedron.

Orthogonal projections

The pentakis dodecahedron has three symmetry positions, two on vertices, and one on a midedge:

Orthogonal projections
Projective
symmetry
[2][6][10]
Image Dual dodecahedron t01 e66.png Dual dodecahedron t01 A2.png Dual dodecahedron t01 H3.png
Dual
image
Dodecahedron t12 e66.png Icosahedron t01 A2.png Icosahedron t01 H3.png

Concave pentakis dodecahedron

A concave pentakis dodecahedron replaces the pentagonal faces of a dodecahedron with inverted pyramids.

Polyhedron truncated 20 dual big.png
Concave pentakis dodecahedron.png
A pentakis dodecahedron (left) with inverted pyramids (right) has the same surface area.

The faces of a regular dodecahedron may be replaced (or augmented with) any regular pentagonal pyramid to produce what is in general referred to as an elevated dodecahedron. For example, if pentagonal pyramids with equilateral triangles are used, the result is a non-convex deltahedron. Any such elevated dodecahedron has the same combinatorial structure as a pentakis dodecahedron, i.e., the same Schlegel diagram.

Spherical pentakis dodecahedron Spherical pentakis dodecahedron.png
Spherical pentakis dodecahedron
Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532)[5,3]+, (532)
Uniform polyhedron-53-t0.svg Uniform polyhedron-53-t01.svg Uniform polyhedron-53-t1.svg Uniform polyhedron-53-t12.svg Uniform polyhedron-53-t2.svg Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5
*n32 symmetry mutation of truncated tilings: n.6.6
Sym.
*n42
[n,3]
Spherical Euclid. CompactParac.Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
[12i,3][9i,3][6i,3]
Truncated
figures
Hexagonal dihedron.svg Uniform tiling 332-t12.png Uniform tiling 432-t12.png Uniform tiling 532-t12.png Uniform tiling 63-t12.svg Truncated order-7 triangular tiling.svg H2-8-3-trunc-primal.svg H2 tiling 23i-6.png H2 tiling 23j12-6.png H2 tiling 23j9-6.png H2 tiling 23j-6.png
Config. 2.6.6 3.6.6 4.6.6 5.6.6 6.6.6 7.6.6 8.6.6 .6.6 12i.6.69i.6.66i.6.6
n-kis
figures
Hexagonal Hosohedron.svg Spherical triakis tetrahedron.svg Spherical tetrakis hexahedron.svg Spherical pentakis dodecahedron.png Uniform tiling 63-t2.svg Heptakis heptagonal tiling.svg H2-8-3-kis-dual.svg H2checkers 33i.png
Config. V2.6.6 V3.6.6 V4.6.6 V5.6.6 V6.6.6 V7.6.6V8.6.6V.6.6V12i.6.6V9i.6.6V6i.6.6

See also

Cultural references

Related Research Articles

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.

<span class="mw-page-title-main">Truncated icosahedron</span> Archimedean solid

In geometry, the truncated icosahedron is an Archimedean solid, one of 13 convex isogonal nonprismatic solids whose 32 faces are two or more types of regular polygons. It is the only one of these shapes that does not contain triangles or squares. In general usage, the degree of truncation is assumed to be uniform unless specified.

<span class="mw-page-title-main">Snub dodecahedron</span> Archimedean solid with 92 faces

In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated dodecahedron</span> Archimedean solid with 32 faces

In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges.

<span class="mw-page-title-main">Rhombic triacontahedron</span> Catalan solid with 30 faces

In geometry, the rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.

<span class="mw-page-title-main">Triakis icosahedron</span> Catalan solid with 60 faces

In geometry, the triakis icosahedron is an Archimedean dual solid, or a Catalan solid, with 60 isosceles triangle faces. Its dual is the truncated dodecahedron. It has also been called the kisicosahedron. It was first depicted, in a non-convex form with equilateral triangle faces, by Leonardo da Vinci in Luca Pacioli's Divina proportione, where it was named the icosahedron elevatum. The capsid of the Hepatitis A virus has the shape of a triakis icosahedron.

<span class="mw-page-title-main">Disdyakis dodecahedron</span> Geometric shape with 48 faces

In geometry, a disdyakis dodecahedron,, is a Catalan solid with 48 faces and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons. It resembles an augmented rhombic dodecahedron. Replacing each face of the rhombic dodecahedron with a flat pyramid creates a polyhedron that looks almost like the disdyakis dodecahedron, and is topologically equivalent to it.

<span class="mw-page-title-main">Disdyakis triacontahedron</span> Catalan solid with 120 faces

In geometry, a disdyakis triacontahedron, hexakis icosahedron, decakis dodecahedron or kisrhombic triacontahedron is a Catalan solid with 120 faces and the dual to the Archimedean truncated icosidodecahedron. As such it is face-uniform but with irregular face polygons. It slightly resembles an inflated rhombic triacontahedron: if one replaces each face of the rhombic triacontahedron with a single vertex and four triangles in a regular fashion, one ends up with a disdyakis triacontahedron. That is, the disdyakis triacontahedron is the Kleetope of the rhombic triacontahedron. It is also the barycentric subdivision of the regular dodecahedron and icosahedron. It has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place.

<span class="mw-page-title-main">Pentagonal hexecontahedron</span>

In geometry, a pentagonal hexecontahedron is a Catalan solid, dual of the snub dodecahedron. It has two distinct forms, which are mirror images of each other. It has 92 vertices that span 60 pentagonal faces. It is the Catalan solid with the most vertices. Among the Catalan and Archimedean solids, it has the second largest number of vertices, after the truncated icosidodecahedron, which has 120 vertices.

<span class="mw-page-title-main">Cubitruncated cuboctahedron</span> Polyhedron with 20 faces

In geometry, the cubitruncated cuboctahedron or cuboctatruncated cuboctahedron is a nonconvex uniform polyhedron, indexed as U16. It has 20 faces (8 hexagons, 6 octagons, and 6 octagrams), 72 edges, and 48 vertices, and has a shäfli symbol of tr{4,3/2}

<span class="mw-page-title-main">Truncated great icosahedron</span> Polyhedron with 32 faces

In geometry, the truncated great icosahedron (or great truncated icosahedron) is a nonconvex uniform polyhedron, indexed as U55. It has 32 faces (12 pentagrams and 20 hexagons), 90 edges, and 60 vertices. It is given a Schläfli symbol t{3,52} or t0,1{3,52} as a truncated great icosahedron.

<span class="mw-page-title-main">Great truncated icosidodecahedron</span> Polyhedron with 62 faces

In geometry, the great truncated icosidodecahedron (or great quasitruncated icosidodecahedron or stellatruncated icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U68. It has 62 faces (30 squares, 20 hexagons, and 12 decagrams), 180 edges, and 120 vertices. It is given a Schläfli symbol t0,1,2{53,3}, and Coxeter-Dynkin diagram, .

<span class="mw-page-title-main">Great snub icosidodecahedron</span> Polyhedron with 92 faces

In geometry, the great snub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U57. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices. It can be represented by a Schläfli symbol sr{52,3}, and Coxeter-Dynkin diagram .

<span class="mw-page-title-main">Inverted snub dodecadodecahedron</span> Polyhedron with 84 faces

In geometry, the inverted snub dodecadodecahedron (or vertisnub dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U60. It is given a Schläfli symbol sr{5/3,5}.

<span class="mw-page-title-main">Great inverted snub icosidodecahedron</span> Polyhedron with 92 faces

In geometry, the great inverted snub icosidodecahedron (or great vertisnub icosidodecahedron) is a uniform star polyhedron, indexed as U69. It is given a Schläfli symbol sr{53,3}, and Coxeter-Dynkin diagram . In the book Polyhedron Models by Magnus Wenninger, the polyhedron is misnamed great snub icosidodecahedron, and vice versa.

<span class="mw-page-title-main">Chamfered dodecahedron</span> Goldberg polyhedron with 42 faces

In geometry, the chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron.

<span class="mw-page-title-main">Regular dodecahedron</span> Polyhedron with 12 regular pentagonal faces

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron that is regular, which is composed of 12 regular pentagonal faces, three meeting at each vertex. It is one of the five Platonic solids. It has 12 faces, 20 vertices, 30 edges, and 160 diagonals. It is represented by the Schläfli symbol {5,3}.

<span class="mw-page-title-main">Medial rhombic triacontahedron</span> Polyhedron with 30 faces

In geometry, the medial rhombic triacontahedron is a nonconvex isohedral polyhedron. It is a stellation of the rhombic triacontahedron, and can also be called small stellated triacontahedron. Its dual is the dodecadodecahedron.

<span class="mw-page-title-main">Great rhombic triacontahedron</span> Polyhedron with 30 faces

In geometry, the great rhombic triacontahedron is a nonconvex isohedral, isotoxal polyhedron. It is the dual of the great icosidodecahedron (U54). Like the convex rhombic triacontahedron it has 30 rhombic faces, 60 edges and 32 vertices.

<span class="mw-page-title-main">Small hexagonal hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small hexagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small snub icosicosidodecahedron. It is partially degenerate, having coincident vertices, as its dual has coplanar triangular faces.

References

    • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN   0-486-23729-X. (Section 3-9)
    • Sellars, Peter (2005). "Doctor Atomic Libretto". Boosey & Hawkes. We surround the plutonium core from thirty two points spaced equally around its surface, the thirty-two points are the centers of the twenty triangular faces of an icosahedron interwoven with the twelve pentagonal faces of a dodecahedron.
    • Wenninger, Magnus (1983). Dual Models. Cambridge University Press. ISBN   978-0-521-54325-5. MR   0730208. (The thirteen semiregular convex polyhedra and their duals, Page 18, Pentakisdodecahedron)
    • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, ISBN   978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 284, Pentakis dodecahedron )