Pentakis dodecahedron

Last updated
Pentakis dodecahedron
Pentakisdodecahedron.jpg
(Click here for rotating model)
Type Catalan solid
Coxeter diagram CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 5.pngCDel node.png
Conway notation kD
Face type V5.6.6
DU25 facets.png

isosceles triangle
Faces60
Edges90
Vertices32
Vertices by type20{6}+12{5}
Symmetry group Ih, H3, [5,3], (*532)
Rotation group I, [5,3]+, (532)
Dihedral angle 156°43′07″
arccos(−80 + 9√5/109)
Propertiesconvex, face-transitive
Truncated icosahedron.png
Truncated icosahedron
(dual polyhedron)
Pentakisdodecahedron net.png
Net
3D model of a pentakis dodecahedron Pentakis dodecahedron.stl
3D model of a pentakis dodecahedron

In geometry, a pentakis dodecahedron or kisdodecahedron is a polyhedron created by attaching a pentagonal pyramid to each face of a regular dodecahedron; that is, it is the Kleetope of the dodecahedron. Specifically, the term typically refers to a particular Catalan solid, namely the dual of a truncated icosahedron.

Contents

Cartesian coordinates

Let be the golden ratio. The 12 points given by and cyclic permutations of these coordinates are the vertices of a regular icosahedron. Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the points together with the points and cyclic permutations of these coordinates. Multiplying all coordinates of the icosahedron by a factor of gives a slightly smaller icosahedron. The 12 vertices of this icosahedron, together with the vertices of the dodecahedron, are the vertices of a pentakis dodecahedron centered at the origin. The length of its long edges equals . Its faces are acute isosceles triangles with one angle of and two of . The length ratio between the long and short edges of these triangles equals .

Chemistry

C60-cpk.png
The pentakis dodecahedron in a model of buckminsterfullerene: each (spherical) surface segment represents a carbon atom, and if all are replaced with planar faces, a pentakis dodecahedron is produced. Equivalently, a truncated icosahedron is a model of buckminsterfullerene, with each vertex representing a carbon atom.

Biology

The pentakis dodecahedron is also a model of some icosahedrally symmetric viruses, such as Adeno-associated virus. These have 60 symmetry related capsid proteins, which combine to make the 60 symmetrical faces of a pentakis dodecahedron.

Orthogonal projections

The pentakis dodecahedron has three symmetry positions, two on vertices, and one on a midedge:

Orthogonal projections
Projective
symmetry
[2][6][10]
Image Dual dodecahedron t01 e66.png Dual dodecahedron t01 A2.png Dual dodecahedron t01 H3.png
Dual
image
Dodecahedron t12 e66.png Icosahedron t01 A2.png Icosahedron t01 H3.png

Concave pentakis dodecahedron

A concave pentakis dodecahedron replaces the pentagonal faces of a dodecahedron with inverted pyramids.

Polyhedron truncated 20 dual big.png
Concave pentakis dodecahedron.png
Convex (left) and concave (right) pentakis dodecahedron

The faces of a regular dodecahedron may be replaced (or augmented with) any regular pentagonal pyramid to produce what is in general referred to as an elevated dodecahedron. For example, if pentagonal pyramids with equilateral triangles are used, the result is a non-convex deltahedron. Any such elevated dodecahedron has the same combinatorial structure as a pentakis dodecahedron, i.e., the same Schlegel diagram.

Spherical pentakis dodecahedron Spherical pentakis dodecahedron.png
Spherical pentakis dodecahedron
Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532)[5,3]+, (532)
Uniform polyhedron-53-t0.svg Uniform polyhedron-53-t01.svg Uniform polyhedron-53-t1.svg Uniform polyhedron-53-t12.svg Uniform polyhedron-53-t2.svg Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5
*n32 symmetry mutation of truncated tilings: n.6.6
Sym.
*n42
[n,3]
Spherical Euclid. CompactParac.Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
[12i,3][9i,3][6i,3]
Truncated
figures
Hexagonal dihedron.svg Uniform tiling 332-t12.png Uniform tiling 432-t12.png Uniform tiling 532-t12.png Uniform tiling 63-t12.svg Truncated order-7 triangular tiling.svg H2-8-3-trunc-primal.svg H2 tiling 23i-6.png H2 tiling 23j12-6.png H2 tiling 23j9-6.png H2 tiling 23j-6.png
Config. 2.6.6 3.6.6 4.6.6 5.6.6 6.6.6 7.6.6 8.6.6 .6.6 12i.6.69i.6.66i.6.6
n-kis
figures
Hexagonal Hosohedron.svg Spherical triakis tetrahedron.svg Spherical tetrakis hexahedron.svg Spherical pentakis dodecahedron.png Uniform tiling 63-t2.svg Heptakis heptagonal tiling.svg H2-8-3-kis-dual.svg H2checkers 33i.png
Config. V2.6.6 V3.6.6 V4.6.6 V5.6.6 V6.6.6 V7.6.6V8.6.6V.6.6V12i.6.6V9i.6.6V6i.6.6

See also

Cultural references

References