Snub dodecahedron

Last updated
Snub dodecahedron
Snubdodecahedroncw.jpg
(Click here for rotating model)
Type Archimedean solid
Uniform polyhedron
Elements F = 92, E = 150, V = 60 (χ = 2)
Faces by sides(20+60){3}+12{5}
Conway notation sD
Schläfli symbols sr{5,3} or
ht0,1,2{5,3}
Wythoff symbol | 2 3 5
Coxeter diagram CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
Symmetry group I, 1/2H3, [5,3]+, (532), order 60
Rotation group I, [5,3]+, (532), order 60
Dihedral angle 3-3: 164°10′31″ (164.18°)
3-5: 152°55′53″ (152.93°)
References U 29, C 32, W 18
PropertiesSemiregular convex chiral
Polyhedron snub 12-20 left max.png
Colored faces
Polyhedron snub 12-20 left vertfig.svg
3.3.3.3.5
(Vertex figure)
Polyhedron snub 12-20 left dual max.png
Pentagonal hexecontahedron
(dual polyhedron)
Polyhedron snub 12-20 left net.svg
Net
3D model of a snub dodecahedron Snub dodecahedron.stl
3D model of a snub dodecahedron

In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

Contents

The snub dodecahedron has 92 faces (the most of the 13 Archimedean solids): 12 are pentagons and the other 80 are equilateral triangles. It also has 150 edges, and 60 vertices.

It has two distinct forms, which are mirror images (or "enantiomorphs") of each other. The union of both forms is a compound of two snub dodecahedra, and the convex hull of both forms is a truncated icosidodecahedron.

Kepler first named it in Latin as dodecahedron simum in 1619 in his Harmonices Mundi. H. S. M. Coxeter, noting it could be derived equally from either the dodecahedron or the icosahedron, called it snub icosidodecahedron, with a vertical extended Schläfli symbol and flat Schläfli symbol sr{5,3}.

Cartesian coordinates

Let ξ0.94315125924 be the real zero of the cubic polynomial x3 + 2x2φ2, where φ is the golden ratio. Let the point p be given by

.

Let the rotation matrices M1 and M2 be given by

and

M1 represents the rotation around the axis (0,1,φ) through an angle of 2π/5 counterclockwise, while M2 being a cyclic shift of (x,y,z) represents the rotation around the axis (1,1,1) through an angle of 2π/3. Then the 60 vertices of the snub dodecahedron are the 60 images of point p under repeated multiplication by M1 and/or M2, iterated to convergence. (The matrices M1 and M2 generate the 60 rotation matrices corresponding to the 60 rotational symmetries of a regular icosahedron.) The coordinates of the vertices are integral linear combinations of 1, φ, ξ, φξ, ξ2 and φξ2. The edge length equals

Negating all coordinates gives the mirror image of this snub dodecahedron.

As a volume, the snub dodecahedron consists of 80 triangular and 12 pentagonal pyramids. The volume V3 of one triangular pyramid is given by:

and the volume V5 of one pentagonal pyramid by:

The total volume is

The circumradius equals

The midradius equals ξ. This gives an interesting geometrical interpretation of the number ξ. The 20 "icosahedral" triangles of the snub dodecahedron described above are coplanar with the faces of a regular icosahedron. The midradius of this "circumscribed" icosahedron equals 1. This means that ξ is the ratio between the midradii of a snub dodecahedron and the icosahedron in which it is inscribed.

The triangle–triangle dihedral angle is given by

The triangle–pentagon dihedral angle is given by

Metric properties

For a snub dodecahedron whose edge length is 1, the surface area is

Its volume is

Alternatively, this volume may be written as

where,

Its circumradius is

Its midradius is

There are two inscribed spheres, one touching the triangular faces, and one, slightly smaller, touching the pentagonal faces. Their radii are, respectively:

and

The four positive real roots of the sextic equation in R2

are the circumradii of the snub dodecahedron (U29), great snub icosidodecahedron (U57), great inverted snub icosidodecahedron (U69), and great retrosnub icosidodecahedron (U74).

The snub dodecahedron has the highest sphericity of all Archimedean solids. If sphericity is defined as the ratio of volume squared over surface area cubed, multiplied by a constant of 36π (where this constant makes the sphericity of a sphere equal to 1), the sphericity of the snub dodecahedron is about 0.947. [1]

Orthogonal projections

The snub dodecahedron has no point symmetry, so the vertex in the front does not correspond to an opposite vertex in the back. Polyhedron snub 12-20 left from vertex.png
The snub dodecahedron has no point symmetry, so the vertex in the front does not correspond to an opposite vertex in the back.

The snub dodecahedron has two especially symmetric orthogonal projections as shown below, centered on two types of faces: triangles and pentagons, corresponding to the A2 and H2 Coxeter planes.

Orthogonal projections
Centered byFace
Triangle
Face
Pentagon
Edge
Solid Polyhedron snub 12-20 left from yellow max.png Polyhedron snub 12-20 left from red max.png Polyhedron snub 12-20 left from blue max.png
Wireframe Snub dodecahedron A2.png Snub dodecahedron H2.png Snub dodecahedron e1.png
Projective
symmetry
[3][5]+[2]
Dual Dual snub dodecahedron A2.png Dual snub dodecahedron H2.png Dual snub dodecahedron e1.png

Geometric relations

Polyhedron 12 max.png
Polyhedron small rhombi 12-20 max.png
Polyhedron snub 12-20 left max.png
Dodecahedron, rhombicosidodecahedron and snub dodecahedron (animated expansion and twisting)
Polyhedron great rhombi 12-20 subsolid snub left big.png
Polyhedron great rhombi 12-20 big.png
Polyhedron great rhombi 12-20 subsolid snub right big.png
Uniform alternation of a truncated icosidodecahedron

The snub dodecahedron can be generated by taking the twelve pentagonal faces of the dodecahedron and pulling them outward so they no longer touch. At a proper distance this can create the rhombicosidodecahedron by filling in square faces between the divided edges and triangle faces between the divided vertices. But for the snub form, pull the pentagonal faces out slightly less, only add the triangle faces and leave the other gaps empty (the other gaps are rectangles at this point). Then apply an equal rotation to the centers of the pentagons and triangles, continuing the rotation until the gaps can be filled by two equilateral triangles. (The fact that the proper amount to pull the faces out is less in the case of the snub dodecahedron can be seen in either of two ways: the circumradius of the snub dodecahedron is smaller than that of the icosidodecahedron; or, the edge length of the equilateral triangles formed by the divided vertices increases when the pentagonal faces are rotated.)

The snub dodecahedron can also be derived from the truncated icosidodecahedron by the process of alternation. Sixty of the vertices of the truncated icosidodecahedron form a polyhedron topologically equivalent to one snub dodecahedron; the remaining sixty form its mirror-image. The resulting polyhedron is vertex-transitive but not uniform.

Alternatively, combining the vertices of the snub dodecahedron given by the Cartesian coordinates (above) and its mirror will form a semiregular truncated icosidodecahedron. The comparisons between these regular and semiregular polyhedrons is shown in the figure to the right.

Cartesian coordinates for the vertices of this alternative snub dodecahedron are obtained by selecting sets of 12 (of 24 possible even permutations contained in the five sets of truncated icosidodecahedron Cartesian coordinates). The alternations are those with an odd number of minus signs in these three sets:

Truncated icosidodecahedron comparing regular vs quasi-regular overlay of regular and quasi-regular constructions.svg
Snub decahedron comparing regular vs quasi-regular.svg
Overlay of regular and semiregular truncated icosidodecahedra and snub dodecahedra
1/φ, ±1/φ, ±(3 + φ)),
1/φ, ±φ2, ±(−1 + 3φ)),
(±(2φ  1), ±2, ±(2 + φ))

and an even number of minus signs in the these two sets:

2/φ, ±φ, ±(1 + 2φ)),
φ, ±3, ±2φ)

where φ = 1 + 5/2 is the golden ratio. The mirrors of both the regular truncated icosidodecahedron and this alternative snub dodecahedron are obtained by switching the even and odd references to both sign and position permutations.

Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532)[5,3]+, (532)
Uniform polyhedron-53-t0.svg Uniform polyhedron-53-t01.svg Uniform polyhedron-53-t1.svg Uniform polyhedron-53-t12.svg Uniform polyhedron-53-t2.svg Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
Icosahedron.jpg Triakisicosahedron.jpg Rhombictriacontahedron.jpg Pentakisdodecahedron.jpg Dodecahedron.jpg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

This semiregular polyhedron is a member of a sequence of snubbed polyhedra and tilings with vertex figure (3.3.3.3.n) and Coxeter–Dynkin diagram CDel node h.pngCDel n.pngCDel node h.pngCDel 3.pngCDel node h.png. These figures and their duals have (n32) rotational symmetry, being in the Euclidean plane for n = 6, and hyperbolic plane for any higher n. The series can be considered to begin with n = 2, with one set of faces degenerated into digons.

n32 symmetry mutations of snub tilings: 3.3.3.3.n
Symmetry
n32
Spherical Euclidean Compact hyperbolicParacomp.
23233243253263273283232
Snub
figures
Spherical trigonal antiprism.png Spherical snub tetrahedron.png Spherical snub cube.png Spherical snub dodecahedron.png Uniform tiling 63-snub.svg Snub triheptagonal tiling.svg H2-8-3-snub.svg Uniform tiling i32-snub.png
Config. 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.
Gyro
figures
Uniform tiling 432-t0.png Uniform tiling 532-t0.png Spherical pentagonal icositetrahedron.png Spherical pentagonal hexecontahedron.png Tiling Dual Semiregular V3-3-3-3-6 Floret Pentagonal.svg 7-3 floret pentagonal tiling.svg H2-8-3-floret.svg Order-3-infinite floret pentagonal tiling.png
Config. V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7V3.3.3.3.8V3.3.3.3.

Snub dodecahedral graph

Snub dodecahedral graph
Snub dodecahedral graph.png
5-fold symmetry Schlegel diagram
Vertices 60
Edges 150
Automorphisms 60
Properties Hamiltonian, regular
Table of graphs and parameters

In the mathematical field of graph theory, a snub dodecahedral graph is the graph of vertices and edges of the snub dodecahedron, one of the Archimedean solids. It has 60 vertices and 150 edges, and is an Archimedean graph. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.

<span class="mw-page-title-main">Icosidodecahedron</span> Archimedean solid with 32 faces

In geometry, an icosidodecahedron is a polyhedron with twenty (icosi) triangular faces and twelve (dodeca) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

<span class="mw-page-title-main">Truncated icosahedron</span> Archimedean solid

In geometry, the truncated icosahedron is an Archimedean solid, one of 13 convex isogonal nonprismatic solids whose 32 faces are two or more types of regular polygons. It is the only one of these shapes that does not contain triangles or squares. In general usage, the degree of truncation is assumed to be uniform unless specified.

<span class="mw-page-title-main">Snub cube</span> Archimedean solid with 38 faces

In geometry, the snub cube, or snub cuboctahedron, is an Archimedean solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices.

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated dodecahedron</span> Archimedean solid with 32 faces

In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges.

<span class="mw-page-title-main">Rhombic triacontahedron</span> Catalan solid with 30 faces

In geometry, the rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.

<span class="mw-page-title-main">Triakis icosahedron</span> Catalan solid with 60 faces

In geometry, the triakis icosahedron is an Archimedean dual solid, or a Catalan solid, with 60 isosceles triangle faces. Its dual is the truncated dodecahedron. It has also been called the kisicosahedron. It was first depicted, in a non-convex form with equilateral triangle faces, by Leonardo da Vinci in Luca Pacioli's Divina proportione, where it was named the icosahedron elevatum. The capsid of the Hepatitis A virus has the shape of a triakis icosahedron.

<span class="mw-page-title-main">Deltoidal hexecontahedron</span>

In geometry, a deltoidal hexecontahedron is a Catalan solid which is the dual polyhedron of the rhombicosidodecahedron, an Archimedean solid. It is one of six Catalan solids to not have a Hamiltonian path among its vertices.

<span class="mw-page-title-main">Disdyakis triacontahedron</span> Catalan solid with 120 faces

In geometry, a disdyakis triacontahedron, hexakis icosahedron, decakis dodecahedron or kisrhombic triacontahedron is a Catalan solid with 120 faces and the dual to the Archimedean truncated icosidodecahedron. As such it is face-uniform but with irregular face polygons. It slightly resembles an inflated rhombic triacontahedron: if one replaces each face of the rhombic triacontahedron with a single vertex and four triangles in a regular fashion, one ends up with a disdyakis triacontahedron. That is, the disdyakis triacontahedron is the Kleetope of the rhombic triacontahedron. It is also the barycentric subdivision of the regular dodecahedron and icosahedron. It has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place.

<span class="mw-page-title-main">Pentagonal hexecontahedron</span>

In geometry, a pentagonal hexecontahedron is a Catalan solid, dual of the snub dodecahedron. It has two distinct forms, which are mirror images of each other. It has 92 vertices that span 60 pentagonal faces. It is the Catalan solid with the most vertices. Among the Catalan and Archimedean solids, it has the second largest number of vertices, after the truncated icosidodecahedron, which has 120 vertices.

<span class="mw-page-title-main">Snub disphenoid</span> 84th Johnson solid (12 triangular faces)

In geometry, the snub disphenoid, Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron is a convex polyhedron with twelve equilateral triangles as its faces. It is not a regular polyhedron because some vertices have four faces and others have five. It is a dodecahedron, one of the eight deltahedra, and is the 84th Johnson solid. It can be thought of as a square antiprism where both squares are replaced with two equilateral triangles.

<span class="mw-page-title-main">Bilunabirotunda</span> 91st Johnson solid (14 faces)

In geometry, the bilunabirotunda is one of the Johnson solids. A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra. They were named by Norman Johnson, who first listed these polyhedra in 1966.

<span class="mw-page-title-main">Great snub icosidodecahedron</span> Polyhedron with 92 faces

In geometry, the great snub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U57. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices. It can be represented by a Schläfli symbol sr{52,3}, and Coxeter-Dynkin diagram .

<span class="mw-page-title-main">Great inverted snub icosidodecahedron</span> Polyhedron with 92 faces

In geometry, the great inverted snub icosidodecahedron (or great vertisnub icosidodecahedron) is a uniform star polyhedron, indexed as U69. It is given a Schläfli symbol sr{53,3}, and Coxeter-Dynkin diagram . In the book Polyhedron Models by Magnus Wenninger, the polyhedron is misnamed great snub icosidodecahedron, and vice versa.

<span class="mw-page-title-main">Great retrosnub icosidodecahedron</span> Uniform star polyhedron

In geometry, the great retrosnub icosidodecahedron or great inverted retrosnub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U74. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices. It is given a Schläfli symbol sr{32,53}.

<span class="mw-page-title-main">Regular dodecahedron</span> Polyhedron with 12 regular pentagonal faces

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron that is regular, which is composed of 12 regular pentagonal faces, three meeting at each vertex. It is one of the five Platonic solids. It has 12 faces, 20 vertices, 30 edges, and 160 diagonals. It is represented by the Schläfli symbol {5,3}.

<span class="mw-page-title-main">Medial rhombic triacontahedron</span> Polyhedron with 30 faces

In geometry, the medial rhombic triacontahedron is a nonconvex isohedral polyhedron. It is a stellation of the rhombic triacontahedron, and can also be called small stellated triacontahedron. Its dual is the dodecadodecahedron.

<span class="mw-page-title-main">Small hexagonal hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small hexagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small snub icosicosidodecahedron. It is partially degenerate, having coincident vertices, as its dual has coplanar triangular faces.

References

  1. How Spherical Are the Archimedean Solids and Their Duals? P. K. Aravind, The College Mathematics Journal, Vol. 42, No. 2 (March 2011), pp. 98-107
  2. Read, R. C.; Wilson, R. J. (1998), An Atlas of Graphs, Oxford University Press, p. 269