Pentagonal icositetrahedron

Last updated
Pentagonal icositetrahedron
Pentagonalicositetrahedronccw.jpg Pentagonalicositetrahedroncw.jpg
(Click ccw or cw for rotating models.)
Type Catalan
Conway notation gC
Coxeter diagram CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Face polygon DU12 facets.png
irregular pentagon
Faces24
Edges60
Vertices38 = 6 + 8 + 24
Face configuration V3.3.3.3.4
Dihedral angle 136° 18' 33'
Symmetry group O, ½BC3, [4,3]+, 432
Dual polyhedron snub cube
Properties convex, face-transitive, chiral
Pentagonalicositetrahedron net.png
Net
A geometric construction of the Tribonacci constant (AC), with compass and marked ruler, according to the method described by Xerardo Neira. TRIBONACCI.jpg
A geometric construction of the Tribonacci constant (AC), with compass and marked ruler, according to the method described by Xerardo Neira.
3d model of a pentagonal icositetrahedron Pentagonal icositetrahedron.stl
3d model of a pentagonal icositetrahedron

In geometry, a pentagonal icositetrahedron or pentagonal icosikaitetrahedron [1] is a Catalan solid which is the dual of the snub cube. In crystallography it is also called a gyroid. [2] [3]

Contents

It has two distinct forms, which are mirror images (or "enantiomorphs") of each other.

Construction

The pentagonal icositetrahedron can be constructed from a snub cube without taking the dual. Square pyramids are added to the six square faces of the snub cube, and triangular pyramids are added to the eight triangular faces that do not share an edge with a square. The pyramid heights are adjusted to make them coplanar with the other 24 triangular faces of the snub cube. The result is the pentagonal icositetrahedron.

Cartesian coordinates

Denote the tribonacci constant by . (See snub cube for a geometric explanation of the tribonacci constant.) Then Cartesian coordinates for the 38 vertices of a pentagonal icositetrahedron centered at the origin, are as follows:

The convex hulls for these vertices [4] scaled by result in a unit circumradius octahedron centered at the origin, a unit cube centered at the origin scaled to , and an irregular chiral snub cube scaled to , as visualized in the figure below:

Pentagonal Icositetrahedron.svg

Geometry

The pentagonal faces have four angles of and one angle of . The pentagon has three short edges of unit length each, and two long edges of length . The acute angle is between the two long edges. The dihedral angle equals .

If its dual snub cube has unit edge length, its surface area and volume are: [5]

Orthogonal projections

The pentagonal icositetrahedron has three symmetry positions, two centered on vertices, and one on midedge.

Orthogonal projections
Projective
symmetry
[3][4]+[2]
Image Dual snub cube A2.png Dual snub cube B2.png Dual snub cube e1.png
Dual
image
Snub cube A2.png Snub cube B2.png Snub cube e1.png

Variations

Isohedral variations with the same chiral octahedral symmetry can be constructed with pentagonal faces having 3 edge lengths.

This variation shown can be constructed by adding pyramids to 6 square faces and 8 triangular faces of a snub cube such that the new triangular faces with 3 coplanar triangles merged into identical pentagon faces.

Pentagonal icositetrahedron variation0.png
Snub cube with augmented pyramids and merged faces
Pentagonal icositetrahedron variation.png
Pentagonal icositetrahedron
Pentagonal icositetrahedron variation net.png
Net
Spherical pentagonal icositetrahedron Spherical pentagonal icositetrahedron.png
Spherical pentagonal icositetrahedron

This polyhedron is topologically related as a part of sequence of polyhedra and tilings of pentagons with face configurations (V3.3.3.3.n). (The sequence progresses into tilings the hyperbolic plane to any n.) These face-transitive figures have (n32) rotational symmetry.

n32 symmetry mutations of snub tilings: 3.3.3.3.n
Symmetry
n32
Spherical Euclidean Compact hyperbolicParacomp.
23233243253263273283232
Snub
figures
Spherical trigonal antiprism.png Spherical snub tetrahedron.png Spherical snub cube.png Spherical snub dodecahedron.png Uniform tiling 63-snub.svg Snub triheptagonal tiling.svg H2-8-3-snub.svg Uniform tiling i32-snub.png
Config. 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.
Gyro
figures
Uniform tiling 432-t0.png Uniform tiling 532-t0.png Spherical pentagonal icositetrahedron.png Spherical pentagonal hexecontahedron.png Tiling Dual Semiregular V3-3-3-3-6 Floret Pentagonal.svg 7-3 floret pentagonal tiling.svg H2-8-3-floret.svg Order-3-infinite floret pentagonal tiling.png
Config. V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7V3.3.3.3.8V3.3.3.3.

The pentagonal icositetrahedron is second in a series of dual snub polyhedra and tilings with face configuration V3.3.4.3.n.

4n2 symmetry mutations of snub tilings: 3.3.4.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolicParacomp.
24234244254264274284242
Snub
figures
Spherical square antiprism.png Spherical snub cube.png Uniform tiling 44-snub.png H2-5-4-snub.svg Uniform tiling 64-snub.png Uniform tiling 74-snub.png Uniform tiling 84-snub.png Uniform tiling i42-snub.png
Config. 3.3.4.3.2 3.3.4.3.3 3.3.4.3.4 3.3.4.3.5 3.3.4.3.6 3.3.4.3.7 3.3.4.3.8 3.3.4.3.
Gyro
figures
Spherical tetragonal trapezohedron.png Spherical pentagonal icositetrahedron.png Tiling Dual Semiregular V3-3-4-3-4 Cairo Pentagonal.svg H2-5-4-floret.svg
Config. V3.3.4.3.2 V3.3.4.3.3 V3.3.4.3.4 V3.3.4.3.5 V3.3.4.3.6V3.3.4.3.7V3.3.4.3.8V3.3.4.3.

The pentagonal icositetrahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron.

Uniform octahedral polyhedra
Symmetry: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png or CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png or CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.png Uniform polyhedron-33-t2.png Uniform polyhedron-33-t01.png Uniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.svg
Duals to uniform polyhedra
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.jpg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.jpg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.jpg Triakistetrahedron.jpg Dodecahedron.jpg

Related Research Articles

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Snub cube</span> Archimedean solid with 38 faces

In geometry, the snub cube, or snub cuboctahedron, is an Archimedean solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices.

<span class="mw-page-title-main">Snub dodecahedron</span> Archimedean solid with 92 faces

In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Rhombic dodecahedron</span> Catalan solid with 12 faces

In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron.

<span class="mw-page-title-main">Triakis tetrahedron</span> Catalan solid with 12 faces

In geometry, a triakis tetrahedron is a Catalan solid with 12 faces. Each Catalan solid is the dual of an Archimedean solid. The dual of the triakis tetrahedron is the truncated tetrahedron.

<span class="mw-page-title-main">Triakis octahedron</span> Catalan solid with 24 faces

In geometry, a triakis octahedron is an Archimedean dual solid, or a Catalan solid. Its dual is the truncated cube.

<span class="mw-page-title-main">Tetrakis hexahedron</span> Catalan solid with 24 faces

In geometry, a tetrakis hexahedron is a Catalan solid. Its dual is the truncated octahedron, an Archimedean solid.

<span class="mw-page-title-main">Pentakis dodecahedron</span> Catalan solid with 60 faces

In geometry, a pentakis dodecahedron or kisdodecahedron is the polyhedron created by attaching a pentagonal pyramid to each face of a regular dodecahedron; that is, it is the Kleetope of the dodecahedron. It is a Catalan solid, meaning that it is a dual of an Archimedean solid, in this case, the truncated icosahedron.

<span class="mw-page-title-main">Deltoidal icositetrahedron</span> Catalan solid with 24 kite faces

In geometry, the deltoidal icositetrahedron is a Catalan solid. Its 24 faces are congruent kites. The deltoidal icositetrahedron, whose dual is the (uniform) rhombicuboctahedron, is tightly related to the pseudo-deltoidal icositetrahedron, whose dual is the pseudorhombicuboctahedron; but the actual and pseudo-d.i. are not to be confused with each other.

<span class="mw-page-title-main">Disdyakis dodecahedron</span> Geometric shape with 48 faces

In geometry, a disdyakis dodecahedron,, is a Catalan solid with 48 faces and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons. It resembles an augmented rhombic dodecahedron. Replacing each face of the rhombic dodecahedron with a flat pyramid creates a polyhedron that looks almost like the disdyakis dodecahedron, and is topologically equivalent to it. More formally, the disdyakis dodecahedron is the Kleetope of the rhombic dodecahedron. The net of the rhombic dodecahedral pyramid also shares the same topology.

<span class="mw-page-title-main">Deltoidal hexecontahedron</span>

In geometry, a deltoidal hexecontahedron is a Catalan solid which is the dual polyhedron of the rhombicosidodecahedron, an Archimedean solid. It is one of six Catalan solids to not have a Hamiltonian path among its vertices.

<span class="mw-page-title-main">Disdyakis triacontahedron</span> Catalan solid with 120 faces

In geometry, a disdyakis triacontahedron, hexakis icosahedron, decakis dodecahedron or kisrhombic triacontahedron is a Catalan solid with 120 faces and the dual to the Archimedean truncated icosidodecahedron. As such it is face-uniform but with irregular face polygons. It slightly resembles an inflated rhombic triacontahedron: if one replaces each face of the rhombic triacontahedron with a single vertex and four triangles in a regular fashion, one ends up with a disdyakis triacontahedron. That is, the disdyakis triacontahedron is the Kleetope of the rhombic triacontahedron. It also has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place.

<span class="mw-page-title-main">Pentagonal hexecontahedron</span>

In geometry, a pentagonal hexecontahedron is a Catalan solid, dual of the snub dodecahedron. It has two distinct forms, which are mirror images of each other. It has 92 vertices that span 60 pentagonal faces. It is the Catalan solid with the most vertices. Among the Catalan and Archimedean solids, it has the second largest number of vertices, after the truncated icosidodecahedron, which has 120 vertices.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Great snub icosidodecahedron</span> Polyhedron with 92 faces

In geometry, the great snub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U57. It has 92 faces (80 triangles and 12 pentagrams), 150 edges, and 60 vertices. It can be represented by a Schläfli symbol sr{52,3}, and Coxeter-Dynkin diagram .

<span class="mw-page-title-main">Inverted snub dodecadodecahedron</span> Polyhedron with 84 faces

In geometry, the inverted snub dodecadodecahedron (or vertisnub dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U60. It is given a Schläfli symbol sr{5/3,5}.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

<span class="mw-page-title-main">Medial rhombic triacontahedron</span> Polyhedron with 30 faces

In geometry, the medial rhombic triacontahedron is a nonconvex isohedral polyhedron. It is a stellation of the rhombic triacontahedron, and can also be called small stellated triacontahedron. Its dual is the dodecadodecahedron.

<span class="mw-page-title-main">Small hexagonal hexecontahedron</span> Polyhedron with 60 faces

In geometry, the small hexagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small snub icosicosidodecahedron. It is partially degenerate, having coincident vertices, as its dual has coplanar triangular faces.

References

  1. Conway, Symmetries of things, p.284
  2. "Promorphology of Crystals I".
  3. "Crystal Form, Zones, & Habit". Archived from the original on 2003-08-23.
  4. Koca, Mehmet; Ozdes Koca, Nazife; Koc, Ramazon (2010). "Catalan Solids Derived From 3D-Root Systems and Quaternions". Journal of Mathematical Physics. 51 (4). arXiv: 0908.3272 . doi:10.1063/1.3356985.
  5. Eric W. Weisstein, Pentagonal icositetrahedron ( Catalan solid ) at MathWorld.