Archimedean solid

Last updated
The Archimedean solids. Two of them are chiral, with both forms shown, making 15 models in all. Archimedian Solids 15.jpg
The Archimedean solids. Two of them are chiral, with both forms shown, making 15 models in all.

The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygons, but not all alike, and whose vertices are all symmetric to each other. The solids were named after Archimedes, although he did not claim credit for them. They belong to the class of uniform polyhedra, the polyhedra with regular faces and symmetric vertices. Some Archimedean solids were portrayed in the works of artists and mathematicians during the Renaissance.

Contents

The elongated square gyrobicupola or pseudo­rhombi­cub­octa­hedron is an extra polyhedron with regular faces and congruent vertices, but it is not generally counted as an Archimedean solid because it is not vertex-transitive.

The solids

The Archimedean solids have a single vertex configuration and highly symmetric properties. A vertex configuration indicates which regular polygons meet at each vertex. For instance, the configuration indicates a polyhedron in which each vertex is met by alternating two triangles and two pentagons. Highly symmetric properties in this case mean the symmetry group of each solid were derived from the Platonic solids, resulting from their construction. [1] Some sources say the Archimedean solids are synonymous with the semiregular polyhedron. [2] Yet, the definition of a semiregular polyhedron may also include the infinite prisms and antiprisms, including the elongated square gyrobicupola. [3]

The thirteen Archimedean solids
NameSolids Vertex configurations [4] Faces [5] Edges [5] Vertices [5] Point
group
[6]
Truncated tetrahedron Truncatedtetrahedron.jpg 3.6.6
Polyhedron truncated 4a vertfig.png
4 triangles
4 hexagons
1812Td
Cuboctahedron Cuboctahedron.svg 3.4.3.4
Polyhedron 6-8 vertfig.png
8 triangles
6 squares
2412Oh
Truncated cube Truncatedhexahedron.svg 3.8.8
Polyhedron truncated 6 vertfig.png
8 triangles
6 octagons
3624Oh
Truncated octahedron Truncatedoctahedron.jpg 4.6.6
Polyhedron truncated 8 vertfig.png
6 squares
8 hexagons
3624Oh
Rhombicuboctahedron Rhombicuboctahedron.jpg 3.4.4.4
Polyhedron small rhombi 6-8 vertfig.png
8 triangles
18 squares
4824Oh
Truncated cuboctahedron Truncatedcuboctahedron.jpg 4.6.8
Polyhedron great rhombi 6-8 vertfig light.png
12 squares
8 hexagons
6 octagons
7248Oh
Snub cube Snubhexahedronccw.jpg 3.3.3.3.4
Polyhedron snub 6-8 left vertfig.png
32 triangles
6 squares
6024O
Icosidodecahedron Icosidodecahedron.svg 3.5.3.5
Polyhedron 12-20 vertfig.png
20 triangles
12 pentagons
6030Ih
Truncated dodecahedron Truncateddodecahedron.jpg 3.10.10
Polyhedron truncated 12 vertfig.png
20 triangles
12 decagons
9060Ih
Truncated icosahedron Truncatedicosahedron.jpg 5.6.6
Polyhedron truncated 20 vertfig.png
12 pentagons
20 hexagons
9060Ih
Rhombicosidodecahedron Rhombicosidodecahedron.jpg 3.4.5.4
Polyhedron small rhombi 12-20 vertfig.png
20 triangles
30 squares
12 pentagons
12060Ih
Truncated icosidodecahedron Truncatedicosidodecahedron.jpg 4.6.10
Polyhedron great rhombi 12-20 vertfig light.png
30 squares
20 hexagons
12 decagons
180120Ih
Snub dodecahedron Snubdodecahedroncw.jpg 3.3.3.3.5
Polyhedron snub 12-20 left vertfig.png
80 triangles
12 pentagons
15060I

The construction of some Archimedean solids begins from the Platonic solids. The truncation involves cutting away corners; to preserve symmetry, the cut is in a plane perpendicular to the line joining a corner to the center of the polyhedron and is the same for all corners, and an example can be found in truncated icosahedron constructed by cutting off all the icosahedron's vertices, having the same symmetry as the icosahedron, the icosahedral symmetry. [7] If the truncation is exactly deep enough such that each pair of faces from adjacent vertices shares exactly one point, it is known as a rectification. Expansion involves moving each face away from the center (by the same distance to preserve the symmetry of the Platonic solid) and taking the convex hull. An example is the rhombicuboctahedron, constructed by separating the cube or octahedron's faces from the centroid and filling them with squares. [8] Snub is a construction process of polyhedra by separating the polyhedron faces, twisting their faces in certain angles, and filling them up with equilateral triangles. Examples can be found in snub cube and snub dodecahedron. The resulting construction of these solids gives the property of chiral, meaning they are not identical when reflected in a mirror. [9] However, not all of them can be constructed in such a way, or they could be constructed alternatively. For example, the icosidodecahedron can be constructed by attaching two pentagonal rotunda base-to-base, or rhombicuboctahedron that can be constructed alternatively by attaching two square cupolas on the bases of octagonal prism. [5]

There are at least for known ten solids that have the Rupert property, a polyhedron that can pass through a copy of itself with the same or similar size. They are the cuboctahedron, truncated octahedron, truncated cube, rhombicuboctahedron, icosidodecahedron, truncated cuboctahedron, truncated icosahedron, truncated dodecahedron, and the truncated tetrahedron. [10] The Catalan solids are the dual polyhedron of Archimedean solids. [1]

Background of discovery

The names of Archimedean solids were taken from Ancient Greek mathematician Archimedes, who discussed them in a now-lost work. Although they were not credited to Archimedes originally, Pappus of Alexandria in the fifth section of his titled compendium Synagoge referring that Archimedes listed thirteen polyhedra and briefly described them in terms of how many faces of each kind these polyhedra have. [11]

Piero della Francesca - Libellus de quinque corporibus regularibus - p52b (cropped).jpg
Truncated icosahedron in De quinque corporibus regularibus
Polyhedron small rhombi 6-8, davinci.png
Rhombicuboctahedron drawn by Leonardo da Vinci (colorized)

During the Renaissance, artists and mathematicians valued pure forms with high symmetry. Some Archimedean solids appeared in Piero della Francesca's De quinque corporibus regularibus , in attempting to study and copy the works of Archimedes, as well as include citations to Archimedes. [12] Yet, he did not credit those shapes to Archimedes and know of Archimedes' work but rather appeared to be an independent rediscovery. [13] Other appearance of the solids appeared in the works of Wenzel Jamnitzer's Perspectiva Corporum Regularium , and both Summa de arithmetica and Divina proportione by Luca Pacioli, drawn by Leonardo da Vinci. [14] The net of Archimedean solids appeared in Albrecht Dürer's Underweysung der Messung, copied from the Pacioli's work. By around 1620, Johannes Kepler in his Harmonices Mundi had completed the rediscovery of the thirteen polyhedra, as well as defining the prisms, antiprisms, and the non-convex solids known as Kepler–Poinsot polyhedra. [15]

The elongated square gyrobicupola, a polyhedron where mathematicians mistakenly constructed the rhombicuboctahedron. Elongated square gyrobicupola.png
The elongated square gyrobicupola, a polyhedron where mathematicians mistakenly constructed the rhombicuboctahedron.

Kepler may have also found another solid known as elongated square gyrobicupola or pseudorhombicuboctahedron. Kepler once stated that there were fourteen Archimedean solids, yet his published enumeration only includes the thirteen uniform polyhedra. The first clear statement of such solid existence was made by Duncan Sommerville in 1905. [16] The solid appeared when some mathematicians mistakenly constructed the rhombicuboctahedron: two square cupolas attached to the octagonal prism, with one of them rotated in forty-five degrees. [17] The thirteen solids have the property of vertex-transitive, meaning any two vertices of those can be translated onto the other one, but the elongated square gyrobicupola does not. Grünbaum (2009) observed that it meets a weaker definition of an Archimedean solid, in which "identical vertices" means merely that the parts of the polyhedron near any two vertices look the same (they have the same shapes of faces meeting around each vertex in the same order and forming the same angles). Grünbaum pointed out a frequent error in which authors define Archimedean solids using some form of this local definition but omit the fourteenth polyhedron. If only thirteen polyhedra are to be listed, the definition must use global symmetries of the polyhedron rather than local neighborhoods. In the aftermath, the elongated square gyrobicupola was withdrawn from the Archimedean solids and included into the Johnson solid instead, a convex polyhedron in which all of the faces are regular polygons. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e., an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral. Its dual polyhedron is the rhombic dodecahedron.

<span class="mw-page-title-main">Cube</span> Solid object with six equal square faces

In geometry, a cube or regular hexahedron is a three-dimensional solid object bounded by six congruent square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It is a type of parallelepiped, with pairs of parallel opposite faces, and more specifically a rhombohedron, with congruent edges, and a rectangular cuboid, with right angles between pairs of intersecting faces and pairs of intersecting edges. It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron.

<span class="mw-page-title-main">Icosidodecahedron</span> Archimedean solid with 32 faces

In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (icosi-) triangular faces and twelve (dodeca-) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such, it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a strictly convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two solids with such a property: the first solids are the pyramids, cupolas. and a rotunda; some of the solids may be constructed by attaching with those previous solids, whereas others may not. These solids are named after mathematicians Norman Johnson and Victor Zalgaller.

<span class="mw-page-title-main">Polyhedron</span> Three-dimensional shape with flat faces, straight edges, and sharp corners

In geometry, a polyhedron is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.

<span class="mw-page-title-main">Rhombicuboctahedron</span> Archimedean solid with 26 faces

In geometry, the rhombicuboctahedron is an Archimedean solid with 26 faces, consisting of 8 equilateral triangles and 18 squares. It was named by Johannes Kepler in his 1618 Harmonices Mundi, being short for truncated cuboctahedral rhombus, with cuboctahedral rhombus being his name for a rhombic dodecahedron.

<span class="mw-page-title-main">Truncated icosahedron</span> A polyhedron resembling a soccerball

In geometry, the truncated icosahedron is a polyhedron that can be constructed by truncating all of the regular icosahedron's vertices. Intuitively, it may be regarded as footballs that are typically patterned with white hexagons and black pentagons. It can be found in the application of geodesic dome structures such as those whose architecture Buckminster Fuller pioneered are often based on this structure. It is an example of an Archimedean solid, as well as a Goldberg polyhedron.

<span class="mw-page-title-main">Snub cube</span> Archimedean solid with 38 faces

In geometry, the snub cube, or snub cuboctahedron, is an Archimedean solid with 38 faces: 6 squares and 32 equilateral triangles. It has 60 edges and 24 vertices. Kepler first named it in Latin as cubus simus in 1619 in his Harmonices Mundi. H. S. M. Coxeter, noting it could be derived equally from the octahedron as the cube, called it snub cuboctahedron, with a vertical extended Schläfli symbol , and representing an alternation of a truncated cuboctahedron, which has Schläfli symbol .

<span class="mw-page-title-main">Truncated tetrahedron</span> Archimedean solid with 8 faces

In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges. It can be constructed by truncating all 4 vertices of a regular tetrahedron.

<span class="mw-page-title-main">Truncated octahedron</span> Archimedean solid

In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces, 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6-zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate 3-dimensional space, as a permutohedron.

<span class="mw-page-title-main">Truncated cuboctahedron</span> Archimedean solid in geometry

In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated dodecahedron</span> Archimedean solid with 32 faces

In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges.

<span class="mw-page-title-main">Triakis icosahedron</span> Catalan solid with 60 faces

In geometry, the triakis icosahedron is an Archimedean dual solid, or a Catalan solid, with 60 isosceles triangle faces. Its dual is the truncated dodecahedron. It has also been called the kisicosahedron. It was first depicted, in a non-convex form with equilateral triangle faces, by Leonardo da Vinci in Luca Pacioli's Divina proportione, where it was named the icosahedron elevatum. The capsid of the Hepatitis A virus has the shape of a triakis icosahedron.

<span class="mw-page-title-main">Elongated square gyrobicupola</span> 37th Johnson solid

In geometry, the elongated square gyrobicupola is a polyhedron constructed by two square cupolas attaching onto the bases of octagonal prism, with one of them rotated. It was once mistakenly considered a rhombicuboctahedron by many mathematicians. It is not considered to be an Archimedean solid because it lacks a set of global symmetries that map every vertex to every other vertex, unlike the 13 Archimedean solids. It is also a canonical polyhedron. For this reason, it is also known as pseudo-rhombicuboctahedron, Miller solid, or Miller–Askinuze solid.

In geometry, the term semiregular polyhedron is used variously by different authors.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular, quasi-regular, or semi-regular. The faces and vertices don't need to be convex, so many of the uniform polyhedra are also star polyhedra.

<span class="mw-page-title-main">Chamfered dodecahedron</span> Goldberg polyhedron with 42 faces

In geometry, the chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron.

A pseudo-uniform polyhedron is a polyhedron which has regular polygons as faces and has the same vertex configuration at all vertices but is not vertex-transitive: it is not true that for any two vertices, there exists a symmetry of the polyhedron mapping the first isometrically onto the second. Thus, although all the vertices of a pseudo-uniform polyhedron appear the same, it is not isogonal. They are called pseudo-uniform polyhedra due to their resemblance to some true uniform polyhedra.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty' and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".

References

Footnotes

  1. 1 2 Diudea (2018), p.  39.
  2. Kinsey, Moore & Prassidis (2011), p.  380.
  3. Williams (1979).
  4. 1 2 3 4 Berman (1971).
  5. Koca & Koca (2013), p.  4750.
  6. Viana et al. (2019), p. 1123, See Fig. 6.
  7. Koca & Koca (2013), p.  49.
  8. Banker (2005).
  9. Field (1997), p. 248.
  10. Schreiber, Fischer & Sternath (2008).
  11. 1 2 Grünbaum (2009).

Works cited

Further reading