Truncated tetrahedron

Last updated
Truncated tetrahedron
Truncatedtetrahedron.jpg
(Click here for rotating model)
Type Archimedean solid
Uniform polyhedron
Elements F = 8, E = 18, V = 12 (χ = 2)
Faces by sides4{3}+4{6}
Conway notation tT
Schläfli symbols t{3,3} = h2{4,3}
t0,1{3,3}
Wythoff symbol 2 3 | 3
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Symmetry group Td, A3, [3,3], (*332), order 24
Rotation group T, [3,3]+, (332), order 12
Dihedral angle 3-6: 109°28′16″
6-6: 70°31′44″
References U 02, C 16, W 6
PropertiesSemiregular convex
Polyhedron truncated 4a max.png
Colored faces
Polyhedron truncated 4a vertfig.svg
3.6.6
(Vertex figure)
Polyhedron truncated 4a dual max.png
Triakis tetrahedron
(dual polyhedron)
Polyhedron truncated 4a net.svg
Net
3D model of a truncated tetrahedron Truncated tetrahedron.stl
3D model of a truncated tetrahedron

In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncating all 4 vertices of a regular tetrahedron at one third of the original edge length.

Contents

A deeper truncation, removing a tetrahedron of half the original edge length from each vertex, is called rectification. The rectification of a tetrahedron produces an octahedron. [1]

A truncated tetrahedron is the Goldberg polyhedron GIII(1,1), containing triangular and hexagonal faces.

A truncated tetrahedron can be called a cantic cube, with Coxeter diagram, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, having half of the vertices of the cantellated cube (rhombicuboctahedron), CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png. There are two dual positions of this construction, and combining them creates the uniform compound of two truncated tetrahedra.

Area and volume

The area A and the volume V of a truncated tetrahedron of edge length a are:

Densest packing

The densest packing of the Archimedean truncated tetrahedron is believed to be Φ = 207/208, as reported by two independent groups using Monte Carlo methods. [2] [3] Although no mathematical proof exists that this is the best possible packing for the truncated tetrahedron, the high proximity to the unity and independency of the findings make it unlikely that an even denser packing is to be found. In fact, if the truncation of the corners is slightly smaller than that of an Archimedean truncated tetrahedron, this new shape can be used to completely fill space. [2]

Cartesian coordinates

Cartesian coordinates for the 12 vertices of a truncated tetrahedron centered at the origin, with edge length √8, are all permutations of (±1,±1,±3) with an even number of minus signs:

Truncated tetrahedron in unit cube.png Triangulated truncated tetrahedron.png UC54-2 truncated tetrahedra.png
Orthogonal projection showing Cartesian coordinates inside its bounding box: (±3,±3,±3).The hexagonal faces of the truncated tetrahedra can be divided into six coplanar equilateral triangles. The four new vertices have Cartesian coordinates:
(−1,−1,−1), (−1,+1,+1),
(+1,−1,+1), (+1,+1,−1). As a solid, this can represent a 3D dissection, making four red octahedra and six yellow tetrahedra.
The set of vertex permutations (±1,±1,±3) with an odd number of minus signs forms a complementary truncated tetrahedron, and combined they form a uniform compound polyhedron.

Another simple construction exists in 4-space as cells of the truncated 16-cell, with vertices as coordinate permutation of:

(0,0,1,2)

Orthogonal projection

Orthogonal projection
Centered byEdge normalFace normalEdgeFace
Wireframe Polyhedron truncated 4a from redyellow max.png Polyhedron truncated 4a from blue max.png Polyhedron truncated 4a from red max.png Polyhedron truncated 4a from yellow max.png
Wireframe Tetrahedron t01 ae.png Tetrahedron t01 af36.png 3-simplex t01.svg 3-simplex t01 A2.svg
Dual Dual tetrahedron t01 ae.png Dual tetrahedron t01 af36.png Dual tetrahedron t01.png Dual tetrahedron t01 A2.png
Projective
symmetry
[1][1][4][3]

Spherical tiling

The truncated tetrahedron can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.

Uniform tiling 332-t12.png Truncated tetrahedron stereographic projection triangle.png
triangle-centered
Truncated tetrahedron stereographic projection hexagon.png
hexagon-centered
Orthographic projection Stereographic projections

Friauf polyhedron

A lower symmetry version of the truncated tetrahedron (a truncated tetragonal disphenoid with order 8 D2d symmetry) is called a Friauf polyhedron in crystals such as complex metallic alloys. This form fits 5 Friauf polyhedra around an axis, giving a 72-degree dihedral angle on a subset of 6-6 edges. [4] It is named after J. B. Friauf and his 1927 paper "The crystal structure of the intermetallic compound MgCu2". [5]

Uses

Giant truncated tetrahedra were used for the "Man the Explorer" and "Man the Producer" theme pavilions in Expo 67. They were made of massive girders of steel bolted together in a geometric lattice. The truncated tetrahedra were interconnected with lattice steel platforms. All of these buildings were demolished after the end of Expo 67, as they had not been built to withstand the severity of the Montreal weather over the years. Their only remnants are in the Montreal city archives, the Public Archives Of Canada and the photo collections of tourists of the times. [6]

The Tetraminx puzzle has a truncated tetrahedral shape. This puzzle shows a dissection of a truncated tetrahedron into 4 octahedra and 6 tetrahedra. It contains 4 central planes of rotations.[ citation needed ]

Tetraminx.jpg

Truncated tetrahedral graph

Truncated tetrahedral graph
Tuncated tetrahedral graph.png
3-fold symmetry
Vertices 12 [7]
Edges 18
Radius 3
Diameter 3 [7]
Girth 3 [7]
Automorphisms 24 (S4) [7]
Chromatic number 3 [7]
Chromatic index 3 [7]
Properties Hamiltonian, regular, 3-vertex-connected, planar graph
Table of graphs and parameters

In the mathematical field of graph theory, a truncated tetrahedral graph is an Archimedean graph, the graph of vertices and edges of the truncated tetrahedron, one of the Archimedean solids. It has 12 vertices and 18 edges. [8] It is a connected cubic graph, [9] and connected cubic transitive graph. [10]

Circular
Truncated tetrahedral graph.circo.svg
Orthographic projections
3-simplex t01.svg
4-fold symmetry
3-simplex t01 A2.svg
3-fold symmetry
Family of uniform tetrahedral polyhedra
Symmetry: [3,3], (*332)[3,3]+, (332)
Uniform polyhedron-33-t0.png Uniform polyhedron-33-t01.png Uniform polyhedron-33-t1.png Uniform polyhedron-33-t12.png Uniform polyhedron-33-t2.png Uniform polyhedron-33-t02.png Uniform polyhedron-33-t012.png Uniform polyhedron-33-s012.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
{3,3} t{3,3} r{3,3} t{3,3} {3,3} rr{3,3} tr{3,3} sr{3,3}
Duals to uniform polyhedra
Tetrahedron.svg Triakistetrahedron.jpg Hexahedron.svg Triakistetrahedron.jpg Tetrahedron.svg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Dodecahedron.svg
V3.3.3 V3.6.6 V3.3.3.3 V3.6.6 V3.3.3 V3.4.3.4 V4.6.6 V3.3.3.3.3

It is also a part of a sequence of cantic polyhedra and tilings with vertex configuration 3.6.n.6. In this wythoff construction the edges between the hexagons represent degenerate digons.

*n33 orbifold symmetries of cantic tilings: 3.6.n.6
N33 fundamental domain t01.png Orbifold
*n32
Spherical Euclidean HyperbolicParacompact
*332*333*433*533*633...*33
Cantic figure Spherical cantic cube.png Uniform tiling 333-t12.png H2 tiling 334-6.png H2 tiling 335-6.png H2 tiling 336-6.png H2 tiling 33i-6.png
Vertex 3.6.2.6 3.6.3.6 3.6.4.6 3.6.5.6 3.6.6.6 3.6..6

Symmetry mutations

This polyhedron is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and [n,3] Coxeter group symmetry.

*n32 symmetry mutation of truncated spherical tilings: t{n,3}
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
Truncated
figures
Spherical triangular prism.svg Uniform tiling 332-t01-1-.png Uniform tiling 432-t01.png Uniform tiling 532-t01.png Uniform tiling 63-t01.svg Truncated heptagonal tiling.svg H2-8-3-trunc-dual.svg H2 tiling 23i-3.png
Symbol t{2,3} t{3,3} t{4,3} t{5,3} t{6,3} t{7,3} t{8,3} t{,3}
Triakis
figures
Spherical trigonal bipyramid.svg Spherical triakis tetrahedron.svg Spherical triakis octahedron.svg Spherical triakis icosahedron.svg Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg Order-7 triakis triangular tiling.svg H2-8-3-kis-primal.svg Ord-infin triakis triang til.png
Config. V3.4.4 V3.6.6 V3.8.8 V3.10.10 V3.12.12 V3.14.14 V3.16.16V3.∞.∞

Examples

See also

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Rhombicuboctahedron</span> Archimedean solid with 26 faces

In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at each one. If all the rectangles are themselves square, it is an Archimedean solid. The polyhedron has octahedral symmetry, like the cube and octahedron. Its dual is called the deltoidal icositetrahedron or trapezoidal icositetrahedron, although its faces are not really true trapezoids.

<span class="mw-page-title-main">Truncated octahedron</span> Archimedean solid

In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces, 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6-zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate 3-dimensional space, as a permutohedron.

<span class="mw-page-title-main">Truncated cube</span> Archimedean solid with 14 regular faces

In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces, 36 edges, and 24 vertices.

<span class="mw-page-title-main">Truncated cuboctahedron</span> Archimedean solid in geometry

In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated dodecahedron</span> Archimedean solid with 32 faces

In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges.

<span class="mw-page-title-main">Tetrakis hexahedron</span> Catalan solid with 24 faces

In geometry, a tetrakis hexahedron is a Catalan solid. Its dual is the truncated octahedron, an Archimedean solid.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

<span class="mw-page-title-main">Bitruncated cubic honeycomb</span>

The bitruncated cubic honeycomb is a space-filling tessellation in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.

<span class="mw-page-title-main">Quarter cubic honeycomb</span>

The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation in Euclidean 3-space. It is composed of tetrahedra and truncated tetrahedra in a ratio of 1:1. It is called "quarter-cubic" because its symmetry unit – the minimal block from which the pattern is developed by reflections – is four times that of the cubic honeycomb.

<span class="mw-page-title-main">Truncated 5-cell</span>

In geometry, a truncated 5-cell is a uniform 4-polytope formed as the truncation of the regular 5-cell.

<span class="mw-page-title-main">Honeycomb (geometry)</span> Tiling of 3-or-more dimensional euclidian or hyperbolic space

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

<span class="mw-page-title-main">Runcinated 24-cells</span>

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

<span class="mw-page-title-main">Tetrahedrally diminished dodecahedron</span> Family of derived polyhedra

In geometry, a tetrahedrally diminished dodecahedron is a topologically self-dual polyhedron made of 16 vertices, 30 edges, and 16 faces.

<span class="mw-page-title-main">Ideal polyhedron</span> Shape in hyperbolic geometry

In three-dimensional hyperbolic geometry, an ideal polyhedron is a convex polyhedron all of whose vertices are ideal points, points "at infinity" rather than interior to three-dimensional hyperbolic space. It can be defined as the convex hull of a finite set of ideal points. An ideal polyhedron has ideal polygons as its faces, meeting along lines of the hyperbolic space.

References

  1. Chisholm, Matt; Avnet, Jeremy (1997). "Truncated Trickery: Truncatering". theory.org. Retrieved 2013-09-02.
  2. 1 2 Damasceno, Pablo F.; Engel, Michael; Glotzer, Sharon C. (2012). "Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces". ACS Nano. 6 (2012): 609–614. arXiv: 1109.1323 . doi:10.1021/nn204012y. PMID   22098586. S2CID   12785227.
  3. Jiao, Yang; Torquato, Sal (Sep 2011). "A Packing of Truncated Tetrahedra that Nearly Fills All of Space". arXiv: 1107.2300 [cond-mat.soft].
  4. http://met.iisc.ernet.in/~lord/webfiles/clusters/polyclusters.pdf [ bare URL PDF ]
  5. Friauf, J. B. (1927). "The crystal structure of the intermetallic compound MgCu2". J. Am. Chem. Soc. 49: 3107–3114. doi:10.1021/ja01411a017.
  6. "Expo 67 - Man the Producer - page 1".
  7. 1 2 3 4 5 6 An Atlas of Graphs, page=172, C105
  8. An Atlas of Graphs, page 267, truncated tetrahedral graph
  9. An Atlas of Graphs, page 130, connected cubic graphs, 12 vertices, C105
  10. An Atlas of Graphs, page 161, connected cubic transitive graphs, 12 vertices, Ct11