Rhombic dodecahedron

Last updated
Rhombic dodecahedron
Rhombicdodecahedron.jpg
(Click here for rotating model)
Type Catalan solid
Coxeter diagram CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png
CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png
Conway notation jC
Face type V3.4.3.4
DU07 facets.png

rhombus
Faces12
Edges24
Vertices14
Vertices by type8{3}+6{4}
Symmetry group Oh, B3, [4,3], (*432)
Rotation group O, [4,3]+, (432)
Dihedral angle 120°
Propertiesconvex, face-transitive isohedral, isotoxal, parallelohedron
Cuboctahedron.png
Cuboctahedron
(dual polyhedron)
Rhombicdodecahedron net.svg
Net
3D model of a rhombic dodecahedron Rhombic dodecahedron.stl
3D model of a rhombic dodecahedron

In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron.

Contents

Properties

The rhombic dodecahedron is a zonohedron. Its polyhedral dual is the cuboctahedron. The long face-diagonal length is exactly 2 times the short face-diagonal length; thus, the acute angles on each face measure arccos(1/3), or approximately 70.53°.

Being the dual of an Archimedean polyhedron, the rhombic dodecahedron is face-transitive, meaning the symmetry group of the solid acts transitively on its set of faces. In elementary terms, this means that for any two faces A and B, there is a rotation or reflection of the solid that leaves it occupying the same region of space while moving face A to face B.

The rhombic dodecahedron can be viewed as the convex hull of the union of the vertices of a cube and an octahedron. The 6 vertices where 4 rhombi meet correspond to the vertices of the octahedron, while the 8 vertices where 3 rhombi meet correspond to the vertices of the cube.

The rhombic dodecahedron is one of the nine edge-transitive convex polyhedra, the others being the five Platonic solids, the cuboctahedron, the icosidodecahedron, and the rhombic triacontahedron.

The rhombic dodecahedron can be used to tessellate three-dimensional space: it can be stacked to fill a space, much like hexagons fill a plane.

This polyhedron in a space-filling tessellation can be seen as the Voronoi tessellation of the face-centered cubic lattice. It is the Brillouin zone of body centered cubic (bcc) crystals. Some minerals such as garnet form a rhombic dodecahedral crystal habit. As Johannes Kepler noted in his 1611 book on snowflakes (Strena seu de Nive Sexangula), honey bees use the geometry of rhombic dodecahedra to form honeycombs from a tessellation of cells each of which is a hexagonal prism capped with half a rhombic dodecahedron. The rhombic dodecahedron also appears in the unit cells of diamond and diamondoids. In these cases, four vertices (alternate threefold ones) are absent, but the chemical bonds lie on the remaining edges. [1]

The graph of the rhombic dodecahedron is nonhamiltonian.

A rhombic dodecahedron can be dissected into 4 obtuse trigonal trapezohedra around its center. These rhombohedra are the cells of a trigonal trapezohedral honeycomb. Analogy: a regular hexagon can be dissected into 3 rhombi around its center. These rhombi are the tiles of a rhombille.

The collections of the Louvre include a die in the shape of a rhombic dodecahedron dating from Ptolemaic Egypt. The faces are inscribed with Greek letters representing the numbers 1 through 12: Α Β Γ Δ Ε Ϛ Z Η Θ Ι ΙΑ ΙΒ. The function of the die is unknown. [2]

Dimensions

Denoting by a the edge length of a rhombic dodecahedron,

( OEIS:  A157697 ),
( OEIS:  A179587 ),
( OEIS:  A020832 ),

Area and volume

The surface area A and the volume V of the rhombic dodecahedron with edge length a are:

Orthogonal projections

The rhombic dodecahedron has four special orthogonal projections along its axes of symmetry, centered on a face, an edge, and the two types of vertex, threefold and fourfold. The last two correspond to the B2 and A2 Coxeter planes.

Orthogonal projections
Projective
symmetry
[4][6][2][2]
Rhombic
dodecahedron
Dual cube t1 B2.png Dual cube t1.png Dual cube t1 e.png Dual cube t1 v.png
Cuboctahedron
(dual)
3-cube t1 B2.svg 3-cube t1.svg Cube t1 e.png Cube t1 v.png

Cartesian coordinates

Pyritohedron animation.gif
Pyritohedron variations between a cube and rhombic dodecahedron
R1-R3.gif
Expansion of a rhombic dodecahedron

For edge length √3, the eight vertices where three faces meet at their obtuse angles have Cartesian coordinates:

(±1, ±1, ±1)

The coordinates of the six vertices where four faces meet at their acute angles are:

(±2, 0, 0), (0, ±2, 0) and (0, 0, ±2)

The rhombic dodecahedron can be seen as a degenerate limiting case of a pyritohedron, with permutation of coordinates (±1, ±1, ±1) and (0, 1 + h, 1 − h2) with parameter h = 1.

These coordinates illustrate that a rhombic dodecahedron can be seen as a cube with a square pyramid attached to each face, and that the six square pyramids could fit together to a cube of the same size, i.e the rhombic dodecahedron has twice the volume of the inscribed cube with edges equal to the short diagonals of the rhombi. [3]

Topologically equivalent forms

A topological rhombic dodecahedron can be seen inside of a hexagonal prism, with hexagons dissected into rhombi in complementary ways between top and bottom. Rhombic dodecahedron in hexagonal prism.png
A topological rhombic dodecahedron can be seen inside of a hexagonal prism, with hexagons dissected into rhombi in complementary ways between top and bottom.

Parallelohedron

The rhombic dodecahedron is a parallelohedron, a space-filling polyhedron, dodecahedrille, being the dual to the tetroctahedrille or half cubic honeycomb, and described by two Coxeter diagrams: CDel node f1.pngCDel 3.pngCDel node.pngCDel split1-43.pngCDel nodes.png and CDel node f1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png. With D3d symmetry, it can be seen as an elongated trigonal trapezohedron.

Rhombic dodecahedra.png
The rhombic dodecahedron can tessellate space by translational copies of itself, as can the stellated rhombic dodecahedron.
Parallelohedron edges rhombic dodecahedron.png
The rhombic dodecahedron can be constructed with 4 sets of 6 parallel edges.

Dihedral rhombic dodecahedron

Other symmetry constructions of the rhombic dodecahedron are also space-filling, and as parallelotopes they are similar to variations of space-filling truncated octahedra. [4]

For example, with 4 square faces, and 60-degree rhombic faces, and D4h dihedral symmetry, order 16. It can be seen as a cuboctahedron with square pyramids augmented on the top and bottom.

Squared rhombic dodecahedron.png Squared rhombic dodecahedron net.png
Net
Coordinates
(0, 0, ±2)
(±1, ±1, 0)
(±1, 0, ±1)
(0, ±1, ±1)

Bilinski dodecahedron

Bilinski dodecahedron.png
Bilinski dodecahedron with edges and front faces colored by their symmetry positions.
Bilinski dodecahedron parallelohedron.png
Bilinski dodecahedron colored by parallel edges

In 1960 Stanko Bilinski discovered a second rhombic dodecahedron with 12 congruent rhombus faces, the Bilinski dodecahedron. It has the same topology but different geometry. The rhombic faces in this form have the golden ratio. [5] [6]

Faces
First formSecond form
DU07 facets.png GoldenRhombus.svg
2:15 + 1/2:1

Deltoidal dodecahedron

Meyers b10 s0232 b5.png
Modell, Kristallform Deltoiddodekaeders -Krantz- (2).jpg
Drawing and crystal model of deltoidal dodecahedron

Another topologically equivalent variation, sometimes called a deltoidal dodecahedron, [7] is isohedral with tetrahedral symmetry order 24, distorting rhombic faces into kites (deltoids). It has 8 vertices adjusted in or out in alternate sets of 4, with the limiting case a tetrahedral envelope. Variations can be parametrized by (a,b), where b and a depend on each other such that the tetrahedron defined by the four vertices of a face has volume zero, i.e. is a planar face. (1,1) is the rhombic solution. As a approaches 1/2, b approaches infinity. It always holds that 1/a + 1/b = 2, with a, b > 1/2.

(±2, 0, 0), (0, ±2, 0), (0, 0, ±2)
(a, a, a), (−a, −a, a), (−a, a, −a), (a, −a, −a)
(−b, −b, −b), (−b, b, b), (b, −b, b), (b, b, −b)
(1,1)(7/8,7/6)(3/4,3/2)(2/3,2)(5/8,5/2)(9/16,9/2)
Rhombic dodecahedron.png Skew rhombic dodecahedron-116.png Skew rhombic dodecahedron-150.png Skew rhombic dodecahedron-200.png Skew rhombic dodecahedron-250.png Skew rhombic dodecahedron-450.png
Spherical rhombic dodecahedron Spherical rhombic dodecahedron.png
Spherical rhombic dodecahedron
Uniform octahedral polyhedra
Symmetry: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png or CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png or CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.png Uniform polyhedron-33-t2.png Uniform polyhedron-33-t01.png Uniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.svg
Duals to uniform polyhedra
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg Dodecahedron.svg

When projected onto a sphere (see right), it can be seen that the edges make up the edges of two tetrahedra arranged in their dual positions (the stella octangula). This trend continues on with the deltoidal icositetrahedron and deltoidal hexecontahedron for the dual pairings of the other regular polyhedra (alongside the triangular bipyramid if improper tilings are to be considered), giving this shape the alternative systematic name of deltoidal dodecahedron.

*n32 symmetry mutation of dual expanded tilings: V3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
Figure
Config.
Spherical trigonal bipyramid.svg
V3.4.2.4
Spherical rhombic dodecahedron.png
V3.4.3.4
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Spherical deltoidal hexecontahedron.png
V3.4.5.4
Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg
V3.4.6.4
Deltoidal triheptagonal tiling.svg
V3.4.7.4
H2-8-3-deltoidal.svg
V3.4.8.4
Deltoidal triapeirogonal til.png
V3.4..4

This polyhedron is a part of a sequence of rhombic polyhedra and tilings with [n,3] Coxeter group symmetry. The cube can be seen as a rhombic hexahedron where the rhombi are squares.

Symmetry mutations of dual quasiregular tilings: V(3.n)2
*n32 Spherical EuclideanHyperbolic
*332*432*532*632*732*832...*32
Tiling Uniform tiling 432-t0.png Spherical rhombic dodecahedron.png Spherical rhombic triacontahedron.png Rhombic star tiling.png 7-3 rhombille tiling.svg H2-8-3-rhombic.svg Ord3infin qreg rhombic til.png
Conf. V(3.3)2 V(3.4)2 V(3.5)2 V(3.6)2 V(3.7)2 V(3.8)2 V(3.)2
*n42 symmetry mutations of quasiregular dual tilings: V(4.n)2
Symmetry
*4n2
[n,4]
Spherical Euclidean Compact hyperbolicParacompactNoncompact
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
 
[iπ/λ,4]
Tiling
 
Conf.
Spherical rhombic dodecahedron.png
V4.3.4.3
Uniform tiling 44-t0.svg
V4.4.4.4
H2-5-4-rhombic.svg
V4.5.4.5
Ord64 qreg rhombic til.png
V4.6.4.6
Ord74 qreg rhombic til.png
V4.7.4.7
Ord84 qreg rhombic til.png
V4.8.4.8
Ord4infin qreg rhombic til.png
V4..4.
V4..4.

Similarly it relates to the infinite series of tilings with the face configurations V3.2n.3.2n, the first in the Euclidean plane, and the rest in the hyperbolic plane.

Rhombicdodecahedron net2.png
V3.4.3.4
(Drawn as a net)
Tile V3636.svg
V3.6.3.6
Euclidean plane tiling
Rhombille tiling
Uniform dual tiling 433-t01.png
V3.8.3.8
Hyperbolic plane tiling
(Drawn in a Poincaré disk model)

Stellations

Like many convex polyhedra, the rhombic dodecahedron can be stellated by extending the faces or edges until they meet to form a new polyhedron. Several such stellations have been described by Dorman Luke. [8]

This animation shows the construction of a stellated rhombic dodecahedron by inverting the center-face pyramids of a rhombic dodecahedron. R1-stel.gif
This animation shows the construction of a stellated rhombic dodecahedron by inverting the center-face pyramids of a rhombic dodecahedron.

The first stellation, often simply called the stellated rhombic dodecahedron, is well known. It can be seen as a rhombic dodecahedron with each face augmented by attaching a rhombic-based pyramid to it, with a pyramid height such that the sides lie in the face planes of the neighbouring faces:

Luke describes four more stellations: the second and third stellations (expanding outwards), one formed by removing the second from the third, and another by adding the original rhombic dodecahedron back to the previous one.

SecondThird
Great rhombic dodecahedron.png
Great stellated rhombic dodecahedron
Stellated rhombic dodecahedron.png
Stellated rhombic dodecahedron
In a perfect vertex-first projection two of the tesseract's vertices (marked in pale green) are projected exactly in the center of the rhombic dodecahedron Hypercubeorder.svg
In a perfect vertex-first projection two of the tesseract's vertices (marked in pale green) are projected exactly in the center of the rhombic dodecahedron

The rhombic dodecahedron forms the hull of the vertex-first projection of a tesseract to three dimensions. There are exactly two ways of decomposing a rhombic dodecahedron into four congruent rhombohedra, giving eight possible rhombohedra as projections of the tesseracts 8 cubic cells. One set of projective vectors are: u = (1,1,−1,−1), v = (−1,1,−1,1), w = (1,−1,−1,1).

The rhombic dodecahedron forms the maximal cross-section of a 24-cell, and also forms the hull of its vertex-first parallel projection into three dimensions. The rhombic dodecahedron can be decomposed into six congruent (but non-regular) square dipyramids meeting at a single vertex in the center; these form the images of six pairs of the 24-cell's octahedral cells. The remaining 12 octahedral cells project onto the faces of the rhombic dodecahedron. The non-regularity of these images are due to projective distortion; the facets of the 24-cell are regular octahedra in 4-space.

This decomposition gives an interesting method for constructing the rhombic dodecahedron: cut a cube into six congruent square pyramids, and attach them to the faces of a second cube. The triangular faces of each pair of adjacent pyramids lie on the same plane, and so merge into rhombuses. The 24-cell may also be constructed in an analogous way using two tesseracts. [9]

Architectural meaning and cultural freight

Soulton Hall: house of the Geneva Bible Publisher Sir Rowland Hill as originally constructed in 1560 - a building understood to be built in a code around the rhombicosidodecahedron Scholarly reconstruction of Soulton Hall in accession created by James D. Wenn and James R. Syrett of Byrga Geniht Ltd for Soulton Hall in 2024.jpg
Soulton Hall: house of the Geneva Bible Publisher Sir Rowland Hill as originally constructed in 1560 - a building understood to be built in a code around the rhombicosidodecahedron

The architectural expert James D. Wenn has identified that philosophical and meanings coded into buildings connected with meanings associate with the rhombic dodecahedron by thinkers such as Plato. [10]

Buildings identified as engaging with this kind of code include: [11]

Practical usage

In spacecraft reaction wheel layout, a tetrahedral configuration of four wheels is commonly used. For wheels that perform equally (from a peak torque and max angular momentum standpoint) in both spin directions and across all four wheels, the maximum torque and maximum momentum envelopes for the 3-axis attitude control system (considering idealized actuators) are given by projecting the tesseract representing the limits of each wheel's torque or momentum into 3D space via the 3 × 4 matrix of wheel axes; the resulting 3D polyhedron is a rhombic dodecahedron. [13] Such an arrangement of reaction wheels is not the only possible configuration (a simpler arrangement consists of three wheels mounted to spin about orthogonal axes), but it is advantageous in providing redundancy to mitigate the failure of one of the four wheels (with degraded overall performance available from the remaining three active wheels) and in providing a more convex envelope than a cube, which leads to less agility dependence on axis direction (from an actuator/plant standpoint). Spacecraft mass properties influence overall system momentum and agility, so decreased variance in envelope boundary does not necessarily lead to increased uniformity in preferred axis biases (that is, even with a perfectly distributed performance limit within the actuator subsystem, preferred rotation axes are not necessarily arbitrary at the system level).

The polyhedron is also the basis for the HEALPix grid, used in cosmology for storing and manipulating maps of the cosmic microwave background, and in computer graphics for storing environment maps.

See also

Related Research Articles

<span class="mw-page-title-main">Cube</span> Solid object with six equal square faces

In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets, or sides, with three meeting at each vertex. Viewed from a corner, it is a hexagon and its net is usually depicted as a cross.

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, the regular icosahedron is convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of the Platonic solid and of the deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.

In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.

<span class="mw-page-title-main">Stellation</span> Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

<span class="mw-page-title-main">Rhombic triacontahedron</span> Catalan solid with 30 faces

The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.

<span class="mw-page-title-main">Trapezohedron</span> Polyhedron made of congruent kites arranged radially

In geometry, an n-gonaltrapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron is the dual polyhedron of an n-gonal antiprism. The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites. With a higher symmetry, its 2n faces are kites.

<span class="mw-page-title-main">Disdyakis dodecahedron</span> Geometric shape with 48 faces

In geometry, a disdyakis dodecahedron,, is a Catalan solid with 48 faces and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons. It resembles an augmented rhombic dodecahedron. Replacing each face of the rhombic dodecahedron with a flat pyramid creates a polyhedron that looks almost like the disdyakis dodecahedron, and is topologically equivalent to it.

<span class="mw-page-title-main">Trigonal trapezohedron</span> Polyhedron with 6 congruent rhombus faces

In geometry, a trigonal trapezohedron is a rhombohedron in which, additionally, all six faces are congruent. Alternative names for the same shape are the trigonal deltohedron or isohedral rhombohedron. Some sources just call them rhombohedra.

<span class="mw-page-title-main">Rhombic icosahedron</span>

The rhombic icosahedron is a polyhedron shaped like an oblate sphere. Its 20 faces are congruent golden rhombi; 3, 4, or 5 faces meet at each vertex. It has 5 faces (green on top figure) meeting at each of its 2 poles; these 2 vertices lie on its axis of 5-fold symmetry, which is perpendicular to 5 axes of 2-fold symmetry through the midpoints of opposite equatorial edges (example on top figure: most left-hand and most right-hand mid-edges). Its other 10 faces follow its equator, 5 above and 5 below it; each of these 10 rhombi has 2 of its 4 sides lying on this zig-zag skew decagon equator. The rhombic icosahedron has 22 vertices. It has D5d, [2+,10], (2*5) symmetry group, of order 20; thus it has a center of symmetry (since 5 is odd).

<span class="mw-page-title-main">Chamfered dodecahedron</span> Goldberg polyhedron with 42 faces

In geometry, the chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

<span class="mw-page-title-main">Compound of cube and octahedron</span> Polyhedral compound

The compound of cube and octahedron is a polyhedron which can be seen as either a polyhedral stellation or a compound.

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

<span class="mw-page-title-main">First stellation of the rhombic dodecahedron</span>

In geometry, the first stellation of the rhombic dodecahedron is a self-intersecting polyhedron with 12 faces, each of which is a non-convex hexagon. It is a stellation of the rhombic dodecahedron and has the same outer shell and the same visual appearance as two other shapes: a solid, Escher's solid, with 48 triangular faces, and a polyhedral compound of three flattened octahedra with 24 overlapping triangular faces.

<span class="mw-page-title-main">Chamfer (geometry)</span> Geometric operation which truncates the edges of polyhedra

In geometry, chamfering or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to expansion, moving faces apart and outward, but also maintains the original vertices. For polyhedra, this operation adds a new hexagonal face in place of each original edge.

<span class="mw-page-title-main">Rhombic hexecontahedron</span> 3D geometric shape

In geometry, a rhombic hexecontahedron is a stellation of the rhombic triacontahedron. It is nonconvex with 60 golden rhombic faces with icosahedral symmetry. It was described mathematically in 1940 by Helmut Unkelbach.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty', and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".

<span class="mw-page-title-main">Bilinski dodecahedron</span> Polyhedron with 12 congruent golden rhombus faces

In geometry, the Bilinski dodecahedron is a convex polyhedron with twelve congruent golden rhombus faces. It has the same topology but a different geometry than the face-transitive rhombic dodecahedron. It is a parallelohedron.

<span class="mw-page-title-main">Diminished rhombic dodecahedron</span>

In geometry, a diminished rhombic dodecahedron is a rhombic dodecahedron with one or more vertices removed. This article describes diminishing one 4-valence vertex. This diminishment creates one new square face while 4 rhombic faces are reduced to triangles. It has 13 vertices, 24 edges, and 13 faces. It has C4v symmetry, order 8.

References

  1. Dodecahedral Crystal Habit Archived 2009-04-12 at the Wayback Machine . khulsey.com
  2. Perdrizet, Paul. (1930). "Le jeu alexandrin de l'icosaèdre". Bulletin de l'Institut français d'archéologie orientale. 30: 1–16.
  3. Roberto Cardil, Kepler and the Rhombic Dodecahedron: The Rhombic Dodecahedron as a Cube with Pyramids, MAA
  4. Order in Space: A design source book, Keith Critchlow, p.56–57
  5. Branko Grünbaum (2010). "The Bilinski Dodecahedron and Assorted Parallelohedra, Zonohedra, Monohedra, Isozonohedra, and Otherhedra" (PDF). 32 (4): 5–15. Archived from the original (PDF) on 2015-04-02.{{cite journal}}: Cite journal requires |journal= (help)
  6. H.S.M Coxeter, "Regular polytopes", Dover publications, 1973.
  7. Economic Mineralogy: A Practical Guide to the Study of Useful Minerals, p.8
  8. Luke, D. (1957). "Stellations of the rhombic dodecahedron". The Mathematical Gazette. 41 (337): 189–194. doi:10.2307/3609190. JSTOR   3609190. S2CID   126103579.
  9. Archived at Ghostarchive and the Wayback Machine : "There are SIX Platonic Solids". YouTube .
  10. Garnet as Emblem of Goodness | Philosophical architecture from Henry III to George III , retrieved 2024-02-20
  11. "Category: Anglo Saxon". Thegns of Mercia. Retrieved 2024-02-20.
  12. Incubation is the Prescription | Renaissance Medicine in Text and Architecture , retrieved 2024-02-20
  13. Markley, F. Landis (September 2010). "Maximum Torque and Momentum Envelopes for Reaction-Wheel Arrays". ntrs.nasa.gov. Retrieved 2020-08-20.

Further reading

Computer models

Paper projects

Practical applications