Cube | Hexagonal prism | Rhombic dodecahedron |
Elongated dodecahedron | Truncated octahedron |
In geometry, a parallelohedron is a polyhedron that can be translated without rotations in 3-dimensional Euclidean space to fill space with a honeycomb in which all copies of the polyhedron meet face-to-face. There are five types of parallelohedron, first identified by Evgraf Fedorov in 1885 in his studies of crystallographic systems: the cube, hexagonal prism, rhombic dodecahedron, elongated dodecahedron, and truncated octahedron. [1]
Every parallelohedron is a zonohedron, a centrally symmetric polyhedron with centrally symmetric faces. Like any zonohedron, it can be constructed as the Minkowski sum of line segments, one segment for each parallel class of edges of the polyhedron. For parallelohedra, there are between three and six of these parallel classes. The lengths of the segments can be adjusted arbitrarily; doing so extends or shrinks the corresponding edges of the parallelohedron, without changing its combinatorial type or its property of tiling space. As a limiting case, for a parallelohedron with more than three parallel classes of edges, the length of any one of these classes can be adjusted to zero, producing another parallelohedron of a simpler form, with one fewer class of parallel edges. [2] As with all zonohedra, these shapes automatically have 2 Ci central inversion symmetry, [1] but additional symmetries are possible with an appropriate choice of the generating segments. [3]
The five types of parallelohedron are: [1]
Any zonohedron whose faces have the same combinatorial structure as one of these five shapes is a parallelohedron, regardless of its particular angles or edge lengths. For example, any affine transformation of a parallelohedron will produce another parallelohedron of the same type. [1]
Name | Cube (parallelepiped) | Hexagonal prism Elongated cube | Rhombic dodecahedron | Elongated dodecahedron | Truncated octahedron |
---|---|---|---|---|---|
Images (colors indicate parallel edges) | |||||
Number of generators | 3 | 4 | 4 | 5 | 6 |
Vertices | 8 | 12 | 14 | 18 | 24 |
Edges | 12 | 18 | 24 | 28 | 36 |
Faces | 6 | 8 | 12 | 12 | 14 |
Tiling | |||||
Tiling name and Coxeter–Dynkin diagram | Cubic | Hexagonal prismatic | Rhombic dodecahedral | Elongated dodecahedral | Bitruncated cubic |
When further subdivided according to their symmetry groups, there are 22 forms of the parallelohedra. For each form, the centers of its copies in its honeycomb form the points of one of the 14 Bravais lattices. Because there are fewer Bravais lattices than symmetric forms of parallelohedra, certain pairs of parallelohedra map to the same Bravais lattice. [3]
By placing one endpoint of each generating line segment of a parallelohedron at the origin of three-dimensional space, the generators may be represented as three-dimensional vectors, the positions of their opposite endpoints. For this placement of the segments, one vertex of the parallelohedron will itself be at the origin, and the rest will be at positions given by sums of certain subsets of these vectors. A parallelohedron with vectors can in this way be parameterized by coordinates, three for each vector, but only some of these combinations are valid (because of the requirement that certain triples of segments lie in parallel planes, or equivalently that certain triples of vectors are coplanar) and different combinations may lead to parallelohedra that differ only by a rotation, scaling transformation, or more generally by an affine transformation. When affine transformations are factored out, the number of free parameters that describe the shape of a parallelohedron is zero for a parallelepiped (all parallelepipeds are equivalent to each other under affine transformations), two for a hexagonal prism, three for a rhombic dodecahedron, four for an elongated dodecahedron, and five for a truncated octahedron. [4]
The classification of parallelohedra into five types was first made by Russian crystallographer Evgraf Fedorov, as chapter 13 of a Russian-language book first published in 1885, whose title has been translated into English as An Introduction to the Theory of Figures. [5] Some of the mathematics in this book is faulty; for instance it includes an incorrect proof of a lemma stating that every monohedral tiling of the plane is eventually periodic, [6] proven to be false in 2023 as part of the solution to the einstein problem. [7] In the case of parallelohedra, Fedorov assumed without proof that every parallelohedron is centrally symmetric, and used this assumption to prove his classification. The classification of parallelohedra was later placed on a firmer footing by Hermann Minkowski, who used his uniqueness theorem for polyhedra with given face normals and areas to prove that parallelohedra are centrally symmetric. [1]
In two dimensions the analogous figure to a parallelohedron is a parallelogon, a polygon that can tile the plane edge-to-edge by translation. These are parallelograms and hexagons with opposite sides parallel and of equal length. [8]
In higher dimensions a parallelohedron is called a parallelotope. There are 52 different four-dimensional parallelotopes, first enumerated by Boris Delaunay (with one missing parallelotope, later discovered by Mikhail Shtogrin), [9] and more than 100000 types in five dimensions. [10] [11] Unlike the case for three dimensions, not all of them are zonotopes. 17 of the four-dimensional parallelotopes are zonotopes, one is the regular 24-cell, and the remaining 34 of these shapes are Minkowski sums of zonotopes with the 24-cell. [12] A -dimensional parallelotope can have at most facets, with the permutohedron achieving this maximum. [2]
A plesiohedron is a broader class of three-dimensional space-filling polyhedra, formed from the Voronoi diagrams of periodic sets of points. [8] As Boris Delaunay proved in 1929, [13] every parallelohedron can be made into a plesiohedron by an affine transformation, [1] but this remains open in higher dimensions, [2] and in three dimensions there also exist other plesiohedra that are not parallelohedra. The tilings of space by plesiohedra have symmetries taking any cell to any other cell, but unlike for the parallelohedra, these symmetries may involve rotations, not just translations. [8]
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron.
In geometry, a zonohedron is a convex polyhedron that is centrally symmetric, every face of which is a polygon that is centrally symmetric. Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments in three-dimensional space, or as a three-dimensional projection of a hypercube. Zonohedra were originally defined and studied by E. S. Fedorov, a Russian crystallographer. More generally, in any dimension, the Minkowski sum of line segments forms a polytope known as a zonotope.
The Wigner–Seitz cell, named after Eugene Wigner and Frederick Seitz, is a primitive cell which has been constructed by applying Voronoi decomposition to a crystal lattice. It is used in the study of crystalline materials in crystallography.
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} .
In geometry, the elongated dodecahedron, extended rhombic dodecahedron, rhombo-hexagonal dodecahedron or hexarhombic dodecahedron is a convex dodecahedron with 8 rhombic and 4 hexagonal faces. The hexagons can be made equilateral, or regular depending on the shape of the rhombi. It can be seen as constructed from a rhombic dodecahedron elongated by a square prism.
In geometry, the trapezo-rhombic dodecahedron or rhombo-trapezoidal dodecahedron is a convex dodecahedron with 6 rhombic and 6 trapezoidal faces. It has D3h symmetry. A concave form can be constructed with an identical net, seen as excavating trigonal trapezohedra from the top and bottom. It is also called the trapezoidal dodecahedron.
In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.
In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.
In geometry, the first stellation of the rhombic dodecahedron is a self-intersecting polyhedron with 12 faces, each of which is a non-convex hexagon. It is a stellation of the rhombic dodecahedron and has the same outer shell and the same visual appearance as two other shapes: a solid, Escher's solid, with 48 triangular faces, and a polyhedral compound of three flattened octahedra with 24 overlapping triangular faces.
The truncated rhombicuboctahedron is a polyhedron, constructed as a truncation of the rhombicuboctahedron. It has 50 faces consisting of 18 octagons, 8 hexagons, and 24 squares. It can fill space with the truncated cube, truncated tetrahedron and triangular prism as a truncated runcic cubic honeycomb.
In geometry, chamfering or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to expansion, moving faces apart and outward, but also maintains the original vertices. For polyhedra, this operation adds a new hexagonal face in place of each original edge.
In geometry, the Bilinski dodecahedron is a convex polyhedron with twelve congruent golden rhombus faces. It has the same topology but a different geometry than the face-transitive rhombic dodecahedron. It is a parallelohedron.
In geometry, a plesiohedron is a special kind of space-filling polyhedron, defined as the Voronoi cell of a symmetric Delone set. Three-dimensional Euclidean space can be completely filled by copies of any one of these shapes, with no overlaps. The resulting honeycomb will have symmetries that take any copy of the plesiohedron to any other copy.
In geometry, a space-filling polyhedron is a polyhedron that can be used to fill all of three-dimensional space via translations, rotations and/or reflections, where filling means that; taken together, all the instances of the polyhedron constitute a partition of three-space. Any periodic tiling or honeycomb of three-space can in fact be generated by translating a primitive cell polyhedron.