Stereohedron

Last updated

In geometry and crystallography, a stereohedron is a convex polyhedron that fills space isohedrally, meaning that the symmetries of the tiling take any copy of the stereohedron to any other copy.

Contents

Two-dimensional analogues to the stereohedra are called planigons. Higher dimensional polytopes can also be stereohedra, while they would more accurately be called stereotopes.

Plesiohedra

A subset of stereohedra are called plesiohedrons, defined as the Voronoi cells of a symmetric Delone set.

Parallelohedrons are plesiohedra which are space-filling by translation only. Edges here are colored as parallel vectors.

Parallelohedra
Parallelohedron edges cube.png Parallelohedron edges hexagonal prism.png Parallelohedron edges rhombic dodecahedron.png Parallelohedron edges elongated rhombic dodecahedron.png Parallelohedron edge truncated octahedron.png
cube hexagonal prism rhombic dodecahedron elongated dodecahedron truncated octahedron

Other periodic stereohedra

The catoptric tessellation contain stereohedra cells. Dihedral angles are integer divisors of 180°, and are colored by their order. The first three are the fundamental domains of , , and symmetry, represented by Coxeter-Dynkin diagrams: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png, CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png and CDel branch.pngCDel 3ab.pngCDel branch.png. is a half symmetry of , and is a quarter symmetry.

Any space-filling stereohedra with symmetry elements can be dissected into smaller identical cells which are also stereohedra. The name modifiers below, half, quarter, and eighth represent such dissections.

Catoptric cells
Faces456812
Type Tetrahedra Square pyramid Triangular bipyramid Cube Octahedron Rhombic dodecahedron
Images Eighth pyramidille cell.png
1/48 (1)
Triangular pyramidille cell1.png
1/24 (2)
Oblate tetrahedrille cell.png
1/12 (4)
Half pyramidille cell.png
1/12 (4)
Square quarter pyramidille cell.png
1/24 (2)
Cubic square pyramid.png
1/6 (8)
Half oblate octahedrille cell-cube.png
1/6 (8)
Quarter oblate octahedrille cell.png
1/12 (4)
Quarter cubille cell.png
1/4 (12)
Cubic full domain.png
1 (48)
Oblate cubille cell.png
1/2 (24)
Cubic square bipyramid.png
1/3 (16)
Dodecahedrille cell.png
2 (96)
Symmetry
(order)
C1
1
C1v
2
D2d
4
C1v
2
C1v
2
C4v
8
C2v
4
C2v
4
C3v
6
Oh
48
D3d
12
D4h
16
Oh
48
HoneycombEighth pyramidille
CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 4.pngCDel node f1.png
Triangular pyramidille
CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 4.pngCDel node.png
Oblate tetrahedrille
CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.pngCDel 4.pngCDel node.png
Half pyramidille
CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 4.pngCDel node f1.png
Square quarter pyramidille
CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node f1.png
Pyramidille
CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Half oblate octahedrille
CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 4.pngCDel node.png
Quarter oblate octahedrille
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 4.pngCDel node.png
Quarter cubille
CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node f1.png
Cubille
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Oblate cubille
CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node fh.png
Oblate octahedrille
CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Dodecahedrille
CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

Other convex polyhedra that are stereohedra but not parallelohedra nor plesiohedra include the gyrobifastigium.

Others
Faces81012
Symmetry
(order)
D2d (8)D4h (16)
Images Gyrobifastigium.png Elongated digonal gyrobicupola2.png Ten-of-diamonds decahedron skew.png Elongated oblate octahedron.png
Cell Gyrobifastigium Elongated
gyrobifastigium
Ten of diamonds Elongated
square bipyramid

Related Research Articles

<span class="mw-page-title-main">Convex uniform honeycomb</span> Spatial tiling of convex uniform polyhedra

In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.

In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.

In geometry, a zonohedron is a convex polyhedron that is centrally symmetric, every face of which is a polygon that is centrally symmetric. Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments in three-dimensional space, or as a three-dimensional projection of a hypercube. Zonohedra were originally defined and studied by E. S. Fedorove, a Russian crystallographer. More generally, in any dimension, the Minkowski sum of line segments forms a polytope known as a zonotope.

<span class="mw-page-title-main">Elongated square bipyramid</span> Cube capped by two square pyramids

In geometry, the elongated square bipyramid is the polyhedron constructed by attaching two equilateral square pyramids onto a cube's faces that are opposite each other. It can also be seen as 4 lunes linked together with squares to squares and triangles to triangles. It is also been named the pencil cube or 12-faced pencil cube due to its shape.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Pentagonal tiling</span> A tiling of the plane by pentagons

In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon.

<span class="mw-page-title-main">Honeycomb (geometry)</span> Tiling of 3-or-more dimensional euclidian or hyperbolic space

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

<span class="mw-page-title-main">Tesseractic honeycomb</span>

In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {4,3,3,4}, and constructed by a 4-dimensional packing of tesseract facets.

In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.

<span class="mw-page-title-main">John ellipsoid</span>

In mathematics, the John ellipsoid or Löwner–John ellipsoidE(K) associated to a convex body K in n-dimensional Euclidean space Rn can refer to the n-dimensional ellipsoid of maximal volume contained within K or the ellipsoid of minimal volume that contains K.

James W. Cannon is an American mathematician working in the areas of low-dimensional topology and geometric group theory. He was an Orson Pratt Professor of Mathematics at Brigham Young University.

<span class="mw-page-title-main">Enneahedron</span> Polyhedron with 9 faces

In geometry, an enneahedron is a polyhedron with nine faces. There are 2606 types of convex enneahedron, each having a different pattern of vertex, edge, and face connections. None of them are regular.

<span class="mw-page-title-main">Cyclotruncated simplicial honeycomb</span>

In geometry, the cyclotruncated simplicial honeycomb is a dimensional infinite series of honeycombs, based on the symmetry of the affine Coxeter group. It is given a Schläfli symbol t0,1{3[n+1]}, and is represented by a Coxeter-Dynkin diagram as a cyclic graph of n+1 nodes with two adjacent nodes ringed. It is composed of n-simplex facets, along with all truncated n-simplices.

In four-dimensional Euclidean geometry, the bitruncated 16-cell honeycomb is a uniform space-filling tessellation in Euclidean 4-space.

<span class="mw-page-title-main">Birectified 16-cell honeycomb</span>

In four-dimensional Euclidean geometry, the birectified 16-cell honeycomb is a uniform space-filling tessellation in Euclidean 4-space.

In geometry, a plesiohedron is a special kind of space-filling polyhedron, defined as the Voronoi cell of a symmetric Delone set. Three-dimensional Euclidean space can be completely filled by copies of any one of these shapes, with no overlaps. The resulting honeycomb will have symmetries that take any copy of the plesiohedron to any other copy.

A purely combinatorial approach to mirror symmetry was suggested by Victor Batyrev using the polar duality for -dimensional convex polyhedra. The most famous examples of the polar duality provide Platonic solids: e.g., the cube is dual to octahedron, the dodecahedron is dual to icosahedron. There is a natural bijection between the -dimensional faces of a -dimensional convex polyhedron and -dimensional faces of the dual polyhedron and one has . In Batyrev's combinatorial approach to mirror symmetry the polar duality is applied to special -dimensional convex lattice polytopes which are called reflexive polytopes.

<span class="mw-page-title-main">Elongated gyrobifastigium</span> Space-filling polyhedron with 8 faces

In geometry, the elongated gyrobifastigium or gabled rhombohedron is a space-filling octahedron with 4 rectangles and 4 right-angled pentagonal faces.

<span class="mw-page-title-main">Ten-of-diamonds decahedron</span>

In geometry, the ten-of-diamonds decahedron is a space-filling polyhedron with 10 faces, 2 opposite rhombi with orthogonal major axes, connected by 8 identical isosceles triangle faces. Although it is convex, it is not a Johnson solid because its faces are not composed entirely of regular polygons. Michael Goldberg named it after a playing card, as a 10-faced polyhedron with two opposite rhombic (diamond-shaped) faces. He catalogued it in a 1982 paper as 10-II, the second in a list of 26 known space-filling decahedra.

References