A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts [1] [2] use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others [3] (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.
Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming.
In the influential textbooks of Grünbaum [1] and Ziegler [2] on the subject, as well as in many other texts in discrete geometry, convex polytopes are often simply called "polytopes". Grünbaum points out that this is solely to avoid the endless repetition of the word "convex", and that the discussion should throughout be understood as applying only to the convex variety (p. 51).
A polytope is called full-dimensional if it is an -dimensional object in .
A convex polytope may be defined in a number of ways, depending on what is more suitable for the problem at hand. Grünbaum's definition is in terms of a convex set of points in space. Other important definitions are: as the intersection of half-spaces (half-space representation) and as the convex hull of a set of points (vertex representation).
In his book Convex Polytopes , Grünbaum defines a convex polytope as a compact convex set with a finite number of extreme points :
This is equivalent to defining a bounded convex polytope as the convex hull of a finite set of points, where the finite set must contain the set of extreme points of the polytope. Such a definition is called a vertex representation (V-representation or V-description). [1] For a compact convex polytope, the minimal V-description is unique and it is given by the set of the vertices of the polytope. [1] A convex polytope is called an integral polytope if all of its vertices have integer coordinates.
A convex polytope may be defined as an intersection of a finite number of half-spaces. Such definition is called a half-space representation (H-representation or H-description). [1] There exist infinitely many H-descriptions of a convex polytope. However, for a full-dimensional convex polytope, the minimal H-description is in fact unique and is given by the set of the facet-defining halfspaces. [1]
A closed half-space can be written as a linear inequality: [1]
where is the dimension of the space containing the polytope under consideration. Hence, a closed convex polytope may be regarded as the set of solutions to the system of linear inequalities:
where is the number of half-spaces defining the polytope. This can be concisely written as the matrix inequality:
where is an matrix, is an column vector whose coordinates are the variables to , and is an column vector whose coordinates are the right-hand sides to of the scalar inequalities.
An open convex polytope is defined in the same way, with strict inequalities used in the formulas instead of the non-strict ones.
The coefficients of each row of and correspond with the coefficients of the linear inequality defining the respective half-space. Hence, each row in the matrix corresponds with a supporting hyperplane of the polytope, a hyperplane bounding a half-space that contains the polytope. If a supporting hyperplane also intersects the polytope, it is called a bounding hyperplane (since it is a supporting hyperplane, it can only intersect the polytope at the polytope's boundary).
The foregoing definition assumes that the polytope is full-dimensional. In this case, there is a unique minimal set of defining inequalities (up to multiplication by a positive number). Inequalities belonging to this unique minimal system are called essential. The set of points of a polytope which satisfy an essential inequality with equality is called a facet.
If the polytope is not full-dimensional, then the solutions of lie in a proper affine subspace of and the polytope can be studied as an object in this subspace. In this case, there exist linear equations which are satisfied by all points of the polytope. Adding one of these equations to any of the defining inequalities does not change the polytope. Therefore, in general there is no unique minimal set of inequalities defining the polytope.
In general the intersection of arbitrary half-spaces need not be bounded. However if one wishes to have a definition equivalent to that as a convex hull, then bounding must be explicitly required.
By requiring that the intersection of half-spaces results in a bounded set, the definition becomes equivalent to the vertex-representation. [4] An outline of the proof, that the bounded intersection of half-spaces results in a polytope in vertex-representation, follows:
The bounded intersection of closed half-spaces of is clearly compact and convex. A compact and convex set with a finite number of extreme points must be a polytope, where those extreme points form the set of vertices. It remains to show that the set of extreme points (of the bounded intersection of a finite set of half-spaces) is also finite:
Let be an extreme point of , the bounded intersection of closed half-spaces . We consider the intersection of all the corresponding hyperplanes (which divide the space into the half-spaces) that contain . This yields an affine subspace . For each half-space where the hyperplane does not contain , we consider the intersection of the interior of those half-spaces. This yields an open set . Clearly, . Since is an extreme point of and is relatively open, it follows that must be 0-dimensional and . If was not 0-dimensional, would be the inner point of (at least) a line, which contradicts being an extreme point. Since every construction of chooses either the interior or the boundary of one of the closed half-spaces, there are only finitely many different sets . Every extreme point lies in one of these sets, which means that the amount of extreme points is finite.
The two representations together provide an efficient way to decide whether a given vector is included in a given convex polytope: to show that it is in the polytope, it is sufficient to present it as a convex combination of the polytope vertices (the V-description is used); to show that it is not in the polytope, it is sufficient to present a single defining inequality that it violates. [5] : 256
A subtle point in the representation by vectors is that the number of vectors may be exponential in the dimension, so the proof that a vector is in the polytope might be exponentially long. Fortunately, Carathéodory's theorem guarantees that every vector in the polytope can be represented by at most d+1 defining vectors, where d is the dimension of the space.
For an unbounded polytope (sometimes called: polyhedron), the H-description is still valid, but the V-description should be extended. Theodore Motzkin (1936) proved that any unbounded polytope can be represented as a sum of a bounded polytope and a convex polyhedral cone. [6] In other words, every vector in an unbounded polytope is a convex sum of its vertices (its "defining points"), plus a conical sum of the Euclidean vectors of its infinite edges (its "defining rays"). This is called the finite basis theorem. [3]
Every (bounded) convex polytope is the image of a simplex, as every point is a convex combination of the (finitely many) vertices. However, polytopes are not in general isomorphic to simplices. This is in contrast to the case of vector spaces and linear combinations, every finite-dimensional vector space being not only an image of, but in fact isomorphic to, Euclidean space of some dimension (or analog over other fields).
A face of a convex polytope is any intersection of the polytope with a halfspace such that none of the interior points of the polytope lie on the boundary of the halfspace. Equivalently, a face is the set of points giving equality in some valid inequality of the polytope. [5] : 258
If a polytope is d-dimensional, its facets are its (d − 1)-dimensional faces, its vertices are its 0-dimensional faces, its edges are its 1-dimensional faces, and its ridges are its (d − 2)-dimensional faces.
Given a convex polytope P defined by the matrix inequality , if each row in A corresponds with a bounding hyperplane and is linearly independent of the other rows, then each facet of P corresponds with exactly one row of A, and vice versa, as long as equality holds. Each point on a given facet will satisfy the linear equality of the corresponding row in the matrix. (It may or may not also satisfy equality in other rows). Similarly, each point on a ridge will satisfy equality in two of the rows of A.
In general, an (n − j)-dimensional face satisfies equality in j specific rows of A. These rows form a basis of the face. Geometrically speaking, this means that the face is the set of points on the polytope that lie in the intersection of j of the polytope's bounding hyperplanes.
The faces of a convex polytope thus form an Eulerian lattice called its face lattice, where the partial ordering is by set containment of faces. The definition of a face given above allows both the polytope itself and the empty set to be considered as faces, ensuring that every pair of faces has a join and a meet in the face lattice. The whole polytope is the unique maximum element of the lattice, and the empty set, considered to be a (−1)-dimensional face (a null polytope) of every polytope, is the unique minimum element of the lattice.
Two polytopes are called combinatorially isomorphic if their face lattices are isomorphic.
The polytope graph (polytopal graph, graph of the polytope, 1-skeleton) is the set of vertices and edges of the polytope only, ignoring higher-dimensional faces. For instance, a polyhedral graph is the polytope graph of a three-dimensional polytope. By a result of Whitney [7] the face lattice of a three-dimensional polytope is determined by its graph. The same is true for simple polytopes of arbitrary dimension (Blind & Mani-Levitska 1987, proving a conjecture of Micha Perles). [8] Kalai (1988) [9] gives a simple proof based on unique sink orientations. Because these polytopes' face lattices are determined by their graphs, the problem of deciding whether two three-dimensional or simple convex polytopes are combinatorially isomorphic can be formulated equivalently as a special case of the graph isomorphism problem. However, it is also possible to translate these problems in the opposite direction, showing that polytope isomorphism testing is graph-isomorphism complete. [10]
A convex polytope, like any compact convex subset of Rn, is homeomorphic to a closed ball. [11] Let m denote the dimension of the polytope. If the polytope is full-dimensional, then m = n. The convex polytope therefore is an m-dimensional manifold with boundary, its Euler characteristic is 1, and its fundamental group is trivial. The boundary of the convex polytope is homeomorphic to an (m − 1)-sphere. The boundary's Euler characteristic is 0 for even m and 2 for odd m. The boundary may also be regarded as a tessellation of (m − 1)-dimensional spherical space — i.e. as a spherical tiling.
A convex polytope can be decomposed into a simplicial complex, or union of simplices, satisfying certain properties.
Given a convex r-dimensional polytope P, a subset of its vertices containing (r+1) affinely independent points defines an r-simplex. It is possible to form a collection of subsets such that the union of the corresponding simplices is equal to P, and the intersection of any two simplices is either empty or a lower-dimensional simplex. This simplicial decomposition is the basis of many methods for computing the volume of a convex polytope, since the volume of a simplex is easily given by a formula. [12]
Every convex polyhedron is scissors-congruent to an orthoscheme. Every regular convex polyhedron (Platonic solid) can be dissected into some even number of instances of its characteristic orthoscheme.
Different representations of a convex polytope have different utility, therefore the construction of one representation given another one is an important problem. The problem of the construction of a V-representation is known as the vertex enumeration problem and the problem of the construction of a H-representation is known as the facet enumeration problem. While the vertex set of a bounded convex polytope uniquely defines it, in various applications it is important to know more about the combinatorial structure of the polytope, i.e., about its face lattice. Various convex hull algorithms deal both with the facet enumeration and face lattice construction.
In the planar case, i.e., for a convex polygon, both facet and vertex enumeration problems amount to the ordering vertices (resp. edges) around the convex hull. It is a trivial task when the convex polygon is specified in a traditional way for polygons, i.e., by the ordered sequence of its vertices . When the input list of vertices (or edges) is unordered, the time complexity of the problems becomes O(m log m). [13] A matching lower bound is known in the algebraic decision tree model of computation. [14]
The task of computing the volume of a convex polytope has been studied in the field of computational geometry. The volume can be computed approximately, for instance, using the convex volume approximation technique, when having access to a membership oracle. As for exact computation, one obstacle is that, when given a representation of the convex polytope as an equation system of linear inequalities, the volume of the polytope may have a bit-length which is not polynomial in this representation. [15]
In geometry, a set of points is convex if it contains every line segment between two points in the set. Equivalently, a convex set or a convex region is a set that intersects every line in a line segment, single point, or the empty set. For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex.
In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.
In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset.
In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line.
In solid geometry, a face is a flat surface that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a polyhedron. A face can be finite like a polygon or circle, or infinite like a half-plane or plane.
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. In other cases the dual of the dual – the double dual or bidual – is not necessarily identical to the original. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.
In geometry and combinatorics, an arrangement of hyperplanes is an arrangement of a finite set A of hyperplanes in a linear, affine, or projective space S. Questions about a hyperplane arrangement A generally concern geometrical, topological, or other properties of the complement, M(A), which is the set that remains when the hyperplanes are removed from the whole space. One may ask how these properties are related to the arrangement and its intersection semilattice. The intersection semilattice of A, written L(A), is the set of all subspaces that are obtained by intersecting some of the hyperplanes; among these subspaces are S itself, all the individual hyperplanes, all intersections of pairs of hyperplanes, etc. (excluding, in the affine case, the empty set). These intersection subspaces of A are also called the flats ofA. The intersection semilattice L(A) is partially ordered by reverse inclusion.
In linear algebra, a cone—sometimes called a linear cone for distinguishing it from other sorts of cones—is a subset of a vector space that is closed under positive scalar multiplication; that is, is a cone if implies for every positive scalar . A cone need not be convex, or even look like a cone in Euclidean space.
In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in n-dimensional Euclidean space. There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least one of them is compact, then there is a hyperplane in between them and even two parallel hyperplanes in between them separated by a gap. In another version, if both disjoint convex sets are open, then there is a hyperplane in between them, but not necessarily any gap. An axis which is orthogonal to a separating hyperplane is a separating axis, because the orthogonal projections of the convex bodies onto the axis are disjoint.
In mathematics, specifically in combinatorial commutative algebra, a convex lattice polytope P is called normal if it has the following property: given any positive integer n, every lattice point of the dilation nP, obtained from P by scaling its vertices by the factor n and taking the convex hull of the resulting points, can be written as the sum of exactly n lattice points in P. This property plays an important role in the theory of toric varieties, where it corresponds to projective normality of the toric variety determined by P. Normal polytopes have popularity in algebraic combinatorics. These polytopes also represent the homogeneous case of the Hilbert bases of finite positive rational cones and the connection to algebraic geometry is that they define projectively normal embeddings of toric varieties.
In mathematics, the permutohedron (also spelled permutahedron) of order n is an (n − 1)-dimensional polytope embedded in an n-dimensional space. Its vertex coordinates (labels) are the permutations of the first n natural numbers. The edges identify the shortest possible paths (sets of transpositions) that connect two vertices (permutations). Two permutations connected by an edge differ in only two places (one transposition), and the numbers on these places are neighbors (differ in value by 1).
In mathematics, the vertex enumeration problem for a polytope, a polyhedral cell complex, a hyperplane arrangement, or some other object of discrete geometry, is the problem of determination of the object's vertices given some formal representation of the object. A classical example is the problem of enumeration of the vertices of a convex polytope specified by a set of linear inequalities:
Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.
In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.
In geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points. Integral polytopes are also called lattice polytopes or Z-polytopes. The special cases of two- and three-dimensional integral polytopes may be called polygons or polyhedra instead of polytopes, respectively.
In geometry, the moment curve is an algebraic curve in d-dimensional Euclidean space given by the set of points with Cartesian coordinates of the form
In mathematics, a flip graph is a graph whose vertices are combinatorial or geometric objects, and whose edges link two of these objects when they can be obtained from one another by an elementary operation called a flip. Flip graphs are special cases of geometric graphs.
In mathematics, the order polytope of a finite partially ordered set is a convex polytope defined from the set. The points of the order polytope are the monotonic functions from the given set to the unit interval, its vertices correspond to the upper sets of the partial order, and its dimension is the number of elements in the partial order. The order polytope is a distributive polytope, meaning that coordinatewise minima and maxima of pairs of its points remain within the polytope.
An n-dimensional polyhedron is a geometric object that generalizes the 3-dimensional polyhedron to an n-dimensional space. It is defined as a set of points in real affine space of any dimension n, that has flat sides. It may alternatively be defined as the intersection of finitely many half-spaces. Unlike a 3-dimensional polyhedron, it may be bounded or unbounded. In this terminology, a bounded polyhedron is called a polytope.
{{cite book}}
: CS1 maint: location missing publisher (link)