Cone

Last updated
Cone
Cone with labeled Radius, Height, Angle and Side.svg
A right circular cone with the radius of its base r, its height h, its slant height c and its angle θ.
TypeSolid figure
Faces 1 circular face and 1 conic surface
Euler char. 2
Symmetry group O(2)
Surface area π r2 + π rℓ
Volume (π r2h)/3
A right circular cone and an oblique circular cone Cone 3d.png
A right circular cone and an oblique circular cone
A double cone (not shown infinitely extended) DoubleCone.png
A double cone (not shown infinitely extended)
3D model of a cone Cono 3D.stl
3D model of a cone

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex.

Contents

A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the apex, to all of the points on a base that is in a plane that does not contain the apex. Depending on the author, the base may be restricted to be a circle, any one-dimensional quadratic form in the plane, any closed one-dimensional figure, or any of the above plus all the enclosed points. If the enclosed points are included in the base, the cone is a solid object; otherwise it is a two-dimensional object in three-dimensional space. In the case of a solid object, the boundary formed by these lines or partial lines is called the lateral surface; if the lateral surface is unbounded, it is a conical surface.

In the case of line segments, the cone does not extend beyond the base, while in the case of half-lines, it extends infinitely far. In the case of lines, the cone extends infinitely far in both directions from the apex, in which case it is sometimes called a double cone. Either half of a double cone on one side of the apex is called a nappe.

The axis of a cone is the straight line (if any), passing through the apex, about which the base (and the whole cone) has a circular symmetry.

In common usage in elementary geometry, cones are assumed to be right circular, where circular means that the base is a circle and right means that the axis passes through the centre of the base at right angles to its plane. [1] If the cone is right circular the intersection of a plane with the lateral surface is a conic section. In general, however, the base may be any shape [2] and the apex may lie anywhere (though it is usually assumed that the base is bounded and therefore has finite area, and that the apex lies outside the plane of the base). Contrasted with right cones are oblique cones, in which the axis passes through the centre of the base non-perpendicularly. [3]

Air traffic control tower in the shape of a cone, Sharjah Airport. Sharjah - International (SHJ - OMSJ) AN0609523.jpg
Air traffic control tower in the shape of a cone, Sharjah Airport.

A cone with a polygonal base is called a pyramid.

Depending on the context, "cone" may also mean specifically a convex cone or a projective cone.

Cones can also be generalized to higher dimensions.

Further terminology

The perimeter of the base of a cone is called the "directrix", and each of the line segments between the directrix and apex is a "generatrix" or "generating line" of the lateral surface. (For the connection between this sense of the term "directrix" and the directrix of a conic section, see Dandelin spheres.)

The "base radius" of a circular cone is the radius of its base; often this is simply called the radius of the cone. The aperture of a right circular cone is the maximum angle between two generatrix lines; if the generatrix makes an angle θ to the axis, the aperture is 2θ. In optics, the angle θ is called the half-angle of the cone, to distinguish it from the aperture.

Illustration from Problemata mathematica... published in Acta Eruditorum, 1734 Acta Eruditorum - I geometria, 1734 - BEIC 13446956.jpg
Illustration from Problemata mathematica... published in Acta Eruditorum, 1734
A cone truncated by an inclined plane Cut cone unparallel.JPG
A cone truncated by an inclined plane

A cone with a region including its apex cut off by a plane is called a truncated cone; if the truncation plane is parallel to the cone's base, it is called a frustum . [1] An elliptical cone is a cone with an elliptical base. [1] A generalized cone is the surface created by the set of lines passing through a vertex and every point on a boundary (also see visual hull).

Measurements and equations

Volume

Proof without words that the volume of a cone is a third of a cylinder of equal diameter and height
1.
A cone and a cylinder have radius r and height h.
2.
The volume ratio is maintained when the height is scaled to h' = r [?]p.
3.
Decompose it into thin slices.
4.
Using Cavalieri's principle, reshape each slice into a square of the same area.
5.
The pyramid is replicated twice.
6.
Combining them into a cube shows that the volume ratio is 1:3. Visual proof cone volume.svg
Proof without words that the volume of a cone is a third of a cylinder of equal diameter and height
1.A cone and a cylinder have radius r and height h.
2.The volume ratio is maintained when the height is scaled to h' = rπ.
3.Decompose it into thin slices.
4.Using Cavalieri's principle, reshape each slice into a square of the same area.
5.The pyramid is replicated twice.
6.Combining them into a cube shows that the volume ratio is 1:3.

The volume of any conic solid is one third of the product of the area of the base and the height [4]

In modern mathematics, this formula can easily be computed using calculus — it is, up to scaling, the integral Without using calculus, the formula can be proven by comparing the cone to a pyramid and applying Cavalieri's principle – specifically, comparing the cone to a (vertically scaled) right square pyramid, which forms one third of a cube. This formula cannot be proven without using such infinitesimal arguments – unlike the 2-dimensional formulae for polyhedral area, though similar to the area of the circle – and hence admitted less rigorous proofs before the advent of calculus, with the ancient Greeks using the method of exhaustion. This is essentially the content of Hilbert's third problem – more precisely, not all polyhedral pyramids are scissors congruent (can be cut apart into finite pieces and rearranged into the other), and thus volume cannot be computed purely by using a decomposition argument. [5]

Center of mass

The center of mass of a conic solid of uniform density lies one-quarter of the way from the center of the base to the vertex, on the straight line joining the two.

Right circular cone

Volume

For a circular cone with radius r and height h, the base is a circle of area and so the formula for volume becomes [6]

Slant height

The slant height of a right circular cone is the distance from any point on the circle of its base to the apex via a line segment along the surface of the cone. It is given by , where is the radius of the base and is the height. This can be proved by the Pythagorean theorem.

Surface area

The lateral surface area of a right circular cone is where is the radius of the circle at the bottom of the cone and is the slant height of the cone. [4] The surface area of the bottom circle of a cone is the same as for any circle, . Thus, the total surface area of a right circular cone can be expressed as each of the following:

  • Radius and height
(the area of the base plus the area of the lateral surface; the term is the slant height)
where is the radius and is the height.
Total surface area of a right circular cone, given radius r and slant height l Cone surface area.svg
Total surface area of a right circular cone, given radius 𝑟 and slant height ℓ
  • Radius and slant height
where is the radius and is the slant height.
  • Circumference and slant height
where is the circumference and is the slant height.
  • Apex angle and height
where is the apex angle and is the height.

Circular sector

The circular sector is obtained by unfolding the surface of one nappe of the cone:

  • radius R
  • arc length L
  • central angle φ in radians

Equation form

The surface of a cone can be parameterized as

where is the angle "around" the cone, and is the "height" along the cone.

A right solid circular cone with height and aperture , whose axis is the coordinate axis and whose apex is the origin, is described parametrically as

where range over , , and , respectively.

In implicit form, the same solid is defined by the inequalities

where

More generally, a right circular cone with vertex at the origin, axis parallel to the vector , and aperture , is given by the implicit vector equation where

where , and denotes the dot product.

Elliptic cone

An elliptical cone quadric surface Elliptical Cone Quadric.Png
An elliptical cone quadric surface

In the Cartesian coordinate system, an elliptic cone is the locus of an equation of the form [7]

It is an affine image of the right-circular unit cone with equation From the fact, that the affine image of a conic section is a conic section of the same type (ellipse, parabola,...), one gets:

Obviously, any right circular cone contains circles. This is also true, but less obvious, in the general case (see circular section).

The intersection of an elliptic cone with a concentric sphere is a spherical conic.

Projective geometry

In projective geometry, a cylinder is simply a cone whose apex is at infinity, which corresponds visually to a cylinder in perspective appearing to be a cone towards the sky. Australia Square building in George Street Sydney.jpg
In projective geometry, a cylinder is simply a cone whose apex is at infinity, which corresponds visually to a cylinder in perspective appearing to be a cone towards the sky.

In projective geometry, a cylinder is simply a cone whose apex is at infinity. [8] Intuitively, if one keeps the base fixed and takes the limit as the apex goes to infinity, one obtains a cylinder, the angle of the side increasing as arctan, in the limit forming a right angle. This is useful in the definition of degenerate conics, which require considering the cylindrical conics.

According to G. B. Halsted, a cone is generated similarly to a Steiner conic only with a projectivity and axial pencils (not in perspective) rather than the projective ranges used for the Steiner conic:

"If two copunctual non-costraight axial pencils are projective but not perspective, the meets of correlated planes form a 'conic surface of the second order', or 'cone'." [9]

Generalizations

The definition of a cone may be extended to higher dimensions; see convex cone. In this case, one says that a convex set C in the real vector space is a cone (with apex at the origin) if for every vector x in C and every nonnegative real number a, the vector ax is in C. [2] In this context, the analogues of circular cones are not usually special; in fact one is often interested in polyhedral cones.

An even more general concept is the topological cone, which is defined in arbitrary topological spaces.

See also

Notes

  1. 1 2 3 James, R. C.; James, Glenn (1992-07-31). The Mathematics Dictionary. Springer Science & Business Media. pp. 74–75. ISBN   9780412990410.
  2. 1 2 Grünbaum, Convex Polytopes , second edition, p. 23.
  3. Weisstein, Eric W. "Cone". MathWorld .
  4. 1 2 Alexander, Daniel C.; Koeberlein, Geralyn M. (2014-01-01). Elementary Geometry for College Students. Cengage Learning. ISBN   9781285965901.
  5. Hartshorne, Robin (2013-11-11). Geometry: Euclid and Beyond. Springer Science & Business Media. Chapter 27. ISBN   9780387226767.
  6. Blank, Brian E.; Krantz, Steven George (2006-01-01). Calculus: Single Variable. Springer Science & Business Media. Chapter 8. ISBN   9781931914598.
  7. Protter & Morrey (1970 , p. 583)
  8. Dowling, Linnaeus Wayland (1917-01-01). Projective Geometry. McGraw-Hill book Company, Incorporated.
  9. G. B. Halsted (1906) Synthetic Projective Geometry, page 20

Related Research Articles

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates comprising a distance and an angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Steradian</span> SI derived unit of solid angle

The steradian or square radian is the unit of solid angle in the International System of Units (SI). It is used in three dimensional geometry, and is analogous to the radian, which quantifies planar angles. A solid angle in steradians, projected onto a sphere, gives the area of a spherical cap on the surface, whereas an angle in radians, projected onto a circle, gives a length of a circular arc on the circumference. The name is derived from the Greek στερεός stereos 'solid' + radian.

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a given polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic re the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.

<span class="mw-page-title-main">Solid angle</span> Measure of how large an object appears to an observer at a given point in three-dimensional space

In geometry, a solid angle is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Tautochrone curve</span> Curve for which the time to roll to the end is equal for all starting points

A tautochrone curve or isochrone curve is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve. The curve is a cycloid, and the time is equal to π times the square root of the radius over the acceleration of gravity. The tautochrone curve is related to the brachistochrone curve, which is also a cycloid.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

<span class="mw-page-title-main">Circular segment</span> Area bounded by a circular arc and a straight line

In geometry, a circular segment or disk segment is a region of a disk which is "cut off" from the rest of the disk by a straight line. The complete line is known as a secant, and the section inside the disk as a chord.

<span class="mw-page-title-main">Pappus's centroid theorem</span> Results on the surface areas and volumes of surfaces and solids of revolution

In mathematics, Pappus's centroid theorem is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of revolution.

<span class="mw-page-title-main">Spherical cap</span> Section of a sphere

In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere, so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.

von Mises distribution Probability distribution on the circle

In probability theory and directional statistics, the von Mises distribution is a continuous probability distribution on the circle. It is a close approximation to the wrapped normal distribution, which is the circular analogue of the normal distribution. A freely diffusing angle on a circle is a wrapped normally distributed random variable with an unwrapped variance that grows linearly in time. On the other hand, the von Mises distribution is the stationary distribution of a drift and diffusion process on the circle in a harmonic potential, i.e. with a preferred orientation. The von Mises distribution is the maximum entropy distribution for circular data when the real and imaginary parts of the first circular moment are specified. The von Mises distribution is a special case of the von Mises–Fisher distribution on the N-dimensional sphere.

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

<span class="mw-page-title-main">Viviani's curve</span> Figure-eight shaped curve on a sphere

In mathematics, Viviani's curve, also known as Viviani's window, is a figure eight shaped space curve named after the Italian mathematician Vincenzo Viviani. It is the intersection of a sphere with a cylinder that is tangent to the sphere and passes through two poles of the sphere. Before Viviani this curve was studied by Simon de La Loubère and Gilles de Roberval.

<span class="mw-page-title-main">Multiple integral</span> Generalization of definite integrals to functions of multiple variables

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).

<span class="mw-page-title-main">Pendulum (mechanics)</span> Free swinging suspended body

A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.

<span class="mw-page-title-main">Hypercone</span> 4-dimensional figure

In geometry, a hypercone is the figure in the 4-dimensional Euclidean space represented by the equation

<span class="mw-page-title-main">Spherical sector</span> Intersection of a sphere and cone emanating from its center

In geometry, a spherical sector, also known as a spherical cone, is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap. It is the three-dimensional analogue of the sector of a circle.

<span class="mw-page-title-main">Spherinder</span> Geometric object

In four-dimensional geometry, the spherinder, or spherical cylinder or spherical prism, is a geometric object, defined as the Cartesian product of a 3-ball of radius r1 and a line segment of length 2r2:

References