This article includes a list of general references, but it remains largely unverified because it lacks sufficient corresponding inline citations .(February 2016) (Learn how and when to remove this template message) |

Part of a series of articles about |

Calculus |
---|

**Vector calculus**, or **vector analysis**, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space The term "vector calculus" is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields, and fluid flow.

- Basic objects
- Scalar fields
- Vector fields
- Vectors and pseudovectors
- Vector algebra
- Operators and theorems
- Differential operators
- Integral theorems
- Applications
- Linear approximations
- Optimization
- Physics and engineering
- Generalizations
- Different 3-manifolds
- Other dimensions
- See also
- References
- Citations
- Sources
- External links

Vector calculus was developed from quaternion analysis by J. Willard Gibbs and Oliver Heaviside near the end of the 19th century, and most of the notation and terminology was established by Gibbs and Edwin Bidwell Wilson in their 1901 book, * Vector Analysis *. In the conventional form using cross products, vector calculus does not generalize to higher dimensions, while the alternative approach of geometric algebra which uses exterior products does (see § Generalizations below for more).

A scalar field associates a scalar value to every point in a space. The scalar is a mathematical number representing a physical quantity. Examples of scalar fields in applications include the temperature distribution throughout space, the pressure distribution in a fluid, and spin-zero quantum fields (known as scalar bosons), such as the Higgs field. These fields are the subject of scalar field theory.

A vector field is an assignment of a vector to each point in a space.^{ [1] } A vector field in the plane, for instance, can be visualized as a collection of arrows with a given magnitude and direction each attached to a point in the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from point to point. This can be used, for example, to calculate work done over a line.

In more advanced treatments, one further distinguishes pseudovector fields and pseudoscalar fields, which are identical to vector fields and scalar fields, except that they change sign under an orientation-reversing map: for example, the curl of a vector field is a pseudovector field, and if one reflects a vector field, the curl points in the opposite direction. This distinction is clarified and elaborated in geometric algebra, as described below.

The algebraic (non-differential) operations in vector calculus are referred to as vector algebra, being defined for a vector space and then globally applied to a vector field. The basic algebraic operations consist of:^{ [2] }

Operation | Notation | Description |
---|---|---|

Vector addition | Addition of two vectors, yielding a vector. | |

Scalar multiplication | Multiplication of a scalar and a vector, yielding a vector. | |

Dot product | Multiplication of two vectors, yielding a scalar. | |

Cross product | Multiplication of two vectors in , yielding a (pseudo)vector. |

Also commonly used are the two triple products:

Operation | Notation | Description |
---|---|---|

Scalar triple product | The dot product of the cross product of two vectors. | |

Vector triple product | The cross product of the cross product of two vectors. |

Vector calculus studies various differential operators defined on scalar or vector fields, which are typically expressed in terms of the del operator (), also known as "nabla". The three basic vector operators are:^{ [3] }^{ [4] }

Operation | Notation | Description | Notational analogy | Domain/Range |
---|---|---|---|---|

Gradient | Measures the rate and direction of change in a scalar field. | Scalar multiplication | Maps scalar fields to vector fields. | |

Divergence | Measures the scalar of a source or sink at a given point in a vector field. | Dot product | Maps vector fields to scalar fields. | |

Curl | Measures the tendency to rotate about a point in a vector field in . | Cross product | Maps vector fields to (pseudo)vector fields. | |

f denotes a scalar field and F denotes a vector field |

Also commonly used are the two Laplace operators:

Operation | Notation | Description | Domain/Range |
---|---|---|---|

Laplacian | Measures the difference between the value of the scalar field with its average on infinitesimal balls. | Maps between scalar fields. | |

Vector Laplacian | Measures the difference between the value of the vector field with its average on infinitesimal balls. | Maps between vector fields. | |

f denotes a scalar field and F denotes a vector field |

A quantity called the Jacobian matrix is useful for studying functions when both the domain and range of the function are multivariable, such as a change of variables during integration.

The three basic vector operators have corresponding theorems which generalize the fundamental theorem of calculus to higher dimensions:

Theorem | Statement | Description | ||
---|---|---|---|---|

Gradient theorem | The line integral of the gradient of a scalar field over a curve L is equal to the change in the scalar field between the endpoints p and q of the curve. | |||

Divergence theorem | The integral of the divergence of a vector field over an n-dimensional solid V is equal to the flux of the vector field through the (n−1)-dimensional closed boundary surface of the solid. | |||

Curl (Kelvin–Stokes) theorem | The integral of the curl of a vector field over a surface Σ in is equal to the circulation of the vector field around the closed curve bounding the surface. | |||

denotes a scalar field and F denotes a vector field |

In two dimensions, the divergence and curl theorems reduce to the Green's theorem:

Theorem | Statement | Description | ||
---|---|---|---|---|

Green's theorem | The integral of the divergence (or curl) of a vector field over some region A in equals the flux (or circulation) of the vector field over the closed curve bounding the region. | |||

For divergence, F = (M, −L). For curl, F = (L, M, 0). L and M are functions of (x, y). |

Linear approximations are used to replace complicated functions with linear functions that are almost the same. Given a differentiable function *f*(*x*, *y*) with real values, one can approximate *f*(*x*, *y*) for (*x*, *y*) close to (*a*, *b*) by the formula

The right-hand side is the equation of the plane tangent to the graph of *z* = *f*(*x*, *y*) at (*a*, *b*).

For a continuously differentiable function of several real variables, a point *P* (that is, a set of values for the input variables, which is viewed as a point in **R**^{n}) is **critical** if all of the partial derivatives of the function are zero at *P*, or, equivalently, if its gradient is zero. The critical values are the values of the function at the critical points.

If the function is smooth, or, at least twice continuously differentiable, a critical point may be either a local maximum, a local minimum or a saddle point. The different cases may be distinguished by considering the eigenvalues of the Hessian matrix of second derivatives.

By Fermat's theorem, all local maxima and minima of a differentiable function occur at critical points. Therefore, to find the local maxima and minima, it suffices, theoretically, to compute the zeros of the gradient and the eigenvalues of the Hessian matrix at these zeros.

Vector calculus is particularly useful in studying:

This section does not cite any sources .(August 2019) (Learn how and when to remove this template message) |

Vector calculus is initially defined for Euclidean 3-space, which has additional structure beyond simply being a 3-dimensional real vector space, namely: a norm (giving a notion of length) defined via an inner product (the dot product), which in turn gives a notion of angle, and an orientation, which gives a notion of left-handed and right-handed. These structures give rise to a volume form, and also the cross product, which is used pervasively in vector calculus.

The gradient and divergence require only the inner product, while the curl and the cross product also requires the handedness of the coordinate system to be taken into account (see cross product and handedness for more detail).

Vector calculus can be defined on other 3-dimensional real vector spaces if they have an inner product (or more generally a symmetric nondegenerate form) and an orientation; note that this is less data than an isomorphism to Euclidean space, as it does not require a set of coordinates (a frame of reference), which reflects the fact that vector calculus is invariant under rotations (the special orthogonal group SO(3)).

More generally, vector calculus can be defined on any 3-dimensional oriented Riemannian manifold, or more generally pseudo-Riemannian manifold. This structure simply means that the tangent space at each point has an inner product (more generally, a symmetric nondegenerate form) and an orientation, or more globally that there is a symmetric nondegenerate metric tensor and an orientation, and works because vector calculus is defined in terms of tangent vectors at each point.

Most of the analytic results are easily understood, in a more general form, using the machinery of differential geometry, of which vector calculus forms a subset. Grad and div generalize immediately to other dimensions, as do the gradient theorem, divergence theorem, and Laplacian (yielding harmonic analysis), while curl and cross product do not generalize as directly.

From a general point of view, the various fields in (3-dimensional) vector calculus are uniformly seen as being *k*-vector fields: scalar fields are 0-vector fields, vector fields are 1-vector fields, pseudovector fields are 2-vector fields, and pseudoscalar fields are 3-vector fields. In higher dimensions there are additional types of fields (scalar/vector/pseudovector/pseudoscalar corresponding to 0/1/*n*−1/*n* dimensions, which is exhaustive in dimension 3), so one cannot only work with (pseudo)scalars and (pseudo)vectors.

In any dimension, assuming a nondegenerate form, grad of a scalar function is a vector field, and div of a vector field is a scalar function, but only in dimension 3 or 7^{ [5] } (and, trivially, in dimension 0 or 1) is the curl of a vector field a vector field, and only in 3 or 7 dimensions can a cross product be defined (generalizations in other dimensionalities either require vectors to yield 1 vector, or are alternative Lie algebras, which are more general antisymmetric bilinear products). The generalization of grad and div, and how curl may be generalized is elaborated at Curl: Generalizations; in brief, the curl of a vector field is a bivector field, which may be interpreted as the special orthogonal Lie algebra of infinitesimal rotations; however, this cannot be identified with a vector field because the dimensions differ – there are 3 dimensions of rotations in 3 dimensions, but 6 dimensions of rotations in 4 dimensions (and more generally dimensions of rotations in *n* dimensions).

There are two important alternative generalizations of vector calculus. The first, geometric algebra, uses *k*-vector fields instead of vector fields (in 3 or fewer dimensions, every *k*-vector field can be identified with a scalar function or vector field, but this is not true in higher dimensions). This replaces the cross product, which is specific to 3 dimensions, taking in two vector fields and giving as output a vector field, with the exterior product, which exists in all dimensions and takes in two vector fields, giving as output a bivector (2-vector) field. This product yields Clifford algebras as the algebraic structure on vector spaces (with an orientation and nondegenerate form). Geometric algebra is mostly used in generalizations of physics and other applied fields to higher dimensions.

The second generalization uses differential forms (*k*-covector fields) instead of vector fields or *k*-vector fields, and is widely used in mathematics, particularly in differential geometry, geometric topology, and harmonic analysis, in particular yielding Hodge theory on oriented pseudo-Riemannian manifolds. From this point of view, grad, curl, and div correspond to the exterior derivative of 0-forms, 1-forms, and 2-forms, respectively, and the key theorems of vector calculus are all special cases of the general form of Stokes' theorem.

From the point of view of both of these generalizations, vector calculus implicitly identifies mathematically distinct objects, which makes the presentation simpler but the underlying mathematical structure and generalizations less clear. From the point of view of geometric algebra, vector calculus implicitly identifies *k*-vector fields with vector fields or scalar functions: 0-vectors and 3-vectors with scalars, 1-vectors and 2-vectors with vectors. From the point of view of differential forms, vector calculus implicitly identifies *k*-forms with scalar fields or vector fields: 0-forms and 3-forms with scalar fields, 1-forms and 2-forms with vector fields. Thus for example the curl naturally takes as input a vector field or 1-form, but naturally has as output a 2-vector field or 2-form (hence pseudovector field), which is then interpreted as a vector field, rather than directly taking a vector field to a vector field; this is reflected in the curl of a vector field in higher dimensions not having as output a vector field.

- Analysis of vector-valued curves
- Real-valued function
- Function of a real variable
- Function of several real variables
- Vector calculus identities
- Vector algebra relations
- Del in cylindrical and spherical coordinates
- Directional derivative
- Conservative vector field
- Solenoidal vector field
- Laplacian vector field
- Helmholtz decomposition
- Orthogonal coordinates
- Skew coordinates
- Curvilinear coordinates
- Tensor

In vector calculus, the **curl** is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field.

In mathematics, the **geometric algebra** (**GA**) of a vector space with a quadratic form is an algebra over a field, the Clifford algebra of a vector space with a quadratic form with its multiplication operation called the **geometric product**. The algebra elements are called multivectors, which contains both the scalars and the vector space .

In mathematics, an **inner product space** or a **Hausdorff pre-Hilbert space** is a vector space with a binary operation called an **inner product.** This operation associates each pair of vectors in the space with a scalar quantity known as the inner product of the vectors, often denoted using angle brackets. Inner products allow the rigorous introduction of intuitive geometrical notions, such as the length of a vector or the angle between two vectors. They also provide the means of defining orthogonality between vectors. Inner product spaces generalize Euclidean spaces to vector spaces of any dimension, and are studied in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as **unitary spaces**. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

In mathematics, an **operator** is generally a mapping or function that acts on elements of a space to produce elements of another space. There is no general definition of an *operator*, but the term is often used in place of *function* when the domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to be explicitly characterized, and may be extended to related objects. See Operator (physics) for other examples.

In vector calculus and differential geometry, the **generalized Stokes theorem**, also called the **Stokes–Cartan theorem**, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. It is a generalization of Isaac Newton's fundamental theorem of calculus that relates two-dimensional line integrals to three-dimensional surface integrals.

A **vector space** is a set of objects called *vectors*, which may be added together and multiplied ("scaled") by numbers, called *scalars*. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector *axioms*. To specify that the scalars are real or complex numbers, the terms **real vector space** and **complex vector space** are often used.

In mathematics, physics and engineering, a **Euclidean vector** or simply a **vector** is a geometric object that has magnitude and direction. Vectors can be added to other vectors according to vector algebra. A Euclidean vector is frequently represented by a ray, or graphically as an arrow connecting an *initial point**A* with a *terminal point**B*, and denoted by .

In vector calculus and physics, a **vector field** is an assignment of a vector to each point in a subset of space. For instance, a vector field in the plane can be visualised as a collection of arrows with a given magnitude and direction, each attached to a point in the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

In mathematics, the **cross product** or **vector product** is a binary operation on two vectors in three-dimensional space , and is denoted by the symbol . Given two linearly independent vectors **a** and **b**, the cross product, **a** × **b**, is a vector that is perpendicular to both **a** and **b**, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product.

In physics and mathematics, a **pseudovector** is a quantity that transforms like a vector under a proper rotation, but in three dimensions gains an additional sign flip under an improper rotation such as a reflection. Geometrically, the direction of a reflected pseudovector is opposite to its mirror image, but with equal magnitude. In contrast, the reflection of a *true* vector is exactly the same as its mirror image.

In the mathematical fields of differential geometry and tensor calculus, **differential forms** are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

In linear algebra, a **pseudoscalar** is a quantity that behaves like a scalar, except that it changes sign under a parity inversion while a true scalar does not.

In mathematics, a **differentiable manifold** is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. Any manifold can be described by a collection of charts, also known as an atlas. One may then apply ideas from calculus while working within the individual charts, since each chart lies within a linear space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry.

**Three-dimensional space** is a geometric setting in which three values are required to determine the position of an element. This is the informal meaning of the term dimension.

**Two-dimensional space** is a geometric setting in which two values are required to determine the position of an element. The set ℝ^{2} of pairs of real numbers with appropriate structure often serves as the canonical example of a two-dimensional Euclidean space. For a generalization of the concept, see dimension.

In the study of geometric algebras, a **blade** is a generalization of the concept of scalars and vectors to include *simple* bivectors, trivectors, etc. Specifically, a *k*-blade is any object that can be expressed as the exterior product of *k* vectors, and is of *grade**k*.

In mathematics and physics, a **vector** is an element of a vector space.

In mathematics, a **universal geometric algebra** is a type of geometric algebra generated by real vector spaces endowed with an indefinite quadratic form. Some authors restrict this to the infinite-dimensional case.

- ↑ Galbis, Antonio & Maestre, Manuel (2012).
*Vector Analysis Versus Vector Calculus*. Springer. p. 12. ISBN 978-1-4614-2199-3.CS1 maint: uses authors parameter (link) - ↑ "Comprehensive List of Algebra Symbols".
*Math Vault*. 2020-03-25. Retrieved 2020-09-17. - ↑ "List of Calculus and Analysis Symbols".
*Math Vault*. 2020-05-11. Retrieved 2020-09-17. - ↑ "Differential Operators".
*Math24*. Retrieved 2020-09-17. - ↑ Lizhong Peng & Lei Yang (1999) "The curl in seven dimensional space and its applications",
*Approximation Theory and Its Applications*15(3): 66 to 80 doi : 10.1007/BF02837124

- Sandro Caparrini (2002) "The discovery of the vector representation of moments and angular velocity", Archive for History of Exact Sciences 56:151–81.
- Crowe, Michael J. (1967).
*A History of Vector Analysis : The Evolution of the Idea of a Vectorial System*(reprint ed.). Dover Publications. ISBN 978-0-486-67910-5. - Marsden, J. E. (1976).
*Vector Calculus*. W. H. Freeman & Company. ISBN 978-0-7167-0462-1. - Schey, H. M. (2005).
*Div Grad Curl and all that: An informal text on vector calculus*. W. W. Norton & Company. ISBN 978-0-393-92516-6. - Barry Spain (1965) Vector Analysis, 2nd edition, link from Internet Archive.
- Chen-To Tai (1995).
*A historical study of vector analysis*. Technical Report RL 915, Radiation Laboratory, University of Michigan.

- "Vector analysis",
*Encyclopedia of Mathematics*, EMS Press, 2001 [1994] - "Vector algebra",
*Encyclopedia of Mathematics*, EMS Press, 2001 [1994] - A survey of the improper use of ∇ in vector analysis (1994) Tai, Chen-To
- Vector Analysis: A Text-book for the Use of Students of Mathematics and Physics, (based upon the lectures of Willard Gibbs) by Edwin Bidwell Wilson, published 1902.
- Earliest Known Uses of Some of the Words of Mathematics: Vector Analysis

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.