Gradient theorem

Last updated

The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space (generally n-dimensional) rather than just the real line.

Contents

If φ : URnR is a differentiable function and γ a differentiable curve in U which starts at a point p and ends at a point q, then

where φ denotes the gradient vector field of φ.

The gradient theorem implies that line integrals through gradient fields are path-independent. In physics this theorem is one of the ways of defining a conservative force. By placing φ as potential, φ is a conservative field. Work done by conservative forces does not depend on the path followed by the object, but only the end points, as the above equation shows.

The gradient theorem also has an interesting converse: any path-independent vector field can be expressed as the gradient of a scalar field. Just like the gradient theorem itself, this converse has many striking consequences and applications in both pure and applied mathematics.

Proof

If φ is a differentiable function from some open subset URn to R and r is a differentiable function from some closed interval [a, b] to U (Note that r is differentiable at the interval endpoints a and b. To do this, r is defined on an interval that is larger than and includes [a, b].), then by the multivariate chain rule, the composite function φr is differentiable on [a, b]:

for all t in [a, b]. Here the denotes the usual inner product.

Now suppose the domain U of φ contains the differentiable curve γ with endpoints p and q. (This is oriented in the direction from p to q). If r parametrizes γ for t in [a, b] (i.e., r represents γ as a function of t), then

where the definition of a line integral is used in the first equality, the above equation is used in the second equality, and the second fundamental theorem of calculus is used in the third equality. [1]

Even if the gradient theorem (also called fundamental theorem of calculus for line integrals) has been proved for a differentiable (so looked as smooth) curve so far, the theorem is also proved for a piecewise-smooth curve since this curve is made by joining multiple differentiable curves so the proof for this curve is made by the proof per differentiable curve component. [2]

Examples

Example 1

Suppose γR2 is the circular arc oriented counterclockwise from (5, 0) to (−4, 3). Using the definition of a line integral,

This result can be obtained much more simply by noticing that the function has gradient , so by the Gradient Theorem:

Example 2

For a more abstract example, suppose γRn has endpoints p, q, with orientation from p to q. For u in Rn, let |u| denote the Euclidean norm of u. If α ≥ 1 is a real number, then

Here the final equality follows by the gradient theorem, since the function f(x) = |x|α+1 is differentiable on Rn if α ≥ 1.

If α < 1 then this equality will still hold in most cases, but caution must be taken if γ passes through or encloses the origin, because the integrand vector field |x|α − 1x will fail to be defined there. However, the case α = −1 is somewhat different; in this case, the integrand becomes |x|−2x = ∇(log |x|), so that the final equality becomes log |q| − log |p|.

Note that if n = 1, then this example is simply a slight variant of the familiar power rule from single-variable calculus.

Example 3

Suppose there are n point charges arranged in three-dimensional space, and the i-th point charge has charge Qi and is located at position pi in R3. We would like to calculate the work done on a particle of charge q as it travels from a point a to a point b in R3. Using Coulomb's law, we can easily determine that the force on the particle at position r will be

Here |u| denotes the Euclidean norm of the vector u in R3, and k = 1/(4πε0), where ε0 is the vacuum permittivity.

Let γR3 − {p1, ..., pn} be an arbitrary differentiable curve from a to b. Then the work done on the particle is

Now for each i, direct computation shows that

Thus, continuing from above and using the gradient theorem,

We are finished. Of course, we could have easily completed this calculation using the powerful language of electrostatic potential or electrostatic potential energy (with the familiar formulas W = −ΔU = −qΔV). However, we have not yet defined potential or potential energy, because the converse of the gradient theorem is required to prove that these are well-defined, differentiable functions and that these formulas hold (see below). Thus, we have solved this problem using only Coulomb's Law, the definition of work, and the gradient theorem.

Converse of the gradient theorem

The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:

Theorem   If F is a path-independent vector field, then F is the gradient of some scalar-valued function. [3]

It is straightforward to show that a vector field is path-independent if and only if the integral of the vector field over every closed loop in its domain is zero. Thus the converse can alternatively be stated as follows: If the integral of F over every closed loop in the domain of F is zero, then F is the gradient of some scalar-valued function.

Proof of the converse

Suppose U is an open, path-connected subset of Rn, and F : URn is a continuous and path-independent vector field. Fix some element a of U, and define f : UR byHere γ[a, x] is any (differentiable) curve in U originating at a and terminating at x. We know that f is well-defined because F is path-independent.

Let v be any nonzero vector in Rn. By the definition of the directional derivative,To calculate the integral within the final limit, we must parametrize γ[x, x + tv]. Since F is path-independent, U is open, and t is approaching zero, we may assume that this path is a straight line, and parametrize it as u(s) = x + sv for 0 < s < t. Now, since u'(s) = v, the limit becomeswhere the first equality is from the definition of the derivative with a fact that the integral is equal to 0 at t = 0, and the second equality is from the first fundamental theorem of calculus. Thus we have a formula for vf, (one of ways to represent the directional derivative) where v is arbitrary; for (see its full definition above), its directional derivative with respect to v iswhere the first two equalities just show different representations of the directional derivative. According to the definition of the gradient of a scalar function f, , thus we have found a scalar-valued function f whose gradient is the path-independent vector field F (i.e., F is a conservative vector field.), as desired. [3]

Example of the converse principle

To illustrate the power of this converse principle, we cite an example that has significant physical consequences. In classical electromagnetism, the electric force is a path-independent force; i.e. the work done on a particle that has returned to its original position within an electric field is zero (assuming that no changing magnetic fields are present).

Therefore, the above theorem implies that the electric force field Fe : SR3 is conservative (here S is some open, path-connected subset of R3 that contains a charge distribution). Following the ideas of the above proof, we can set some reference point a in S, and define a function Ue: SR by

Using the above proof, we know Ue is well-defined and differentiable, and Fe = −∇Ue (from this formula we can use the gradient theorem to easily derive the well-known formula for calculating work done by conservative forces: W = −ΔU). This function Ue is often referred to as the electrostatic potential energy of the system of charges in S (with reference to the zero-of-potential a). In many cases, the domain S is assumed to be unbounded and the reference point a is taken to be "infinity", which can be made rigorous using limiting techniques. This function Ue is an indispensable tool used in the analysis of many physical systems.

Generalizations

Many of the critical theorems of vector calculus generalize elegantly to statements about the integration of differential forms on manifolds. In the language of differential forms and exterior derivatives, the gradient theorem states that

for any 0-form, ϕ, defined on some differentiable curve γRn (here the integral of ϕ over the boundary of the γ is understood to be the evaluation of ϕ at the endpoints of γ).

Notice the striking similarity between this statement and the generalized Stokes’ theorem, which says that the integral of any compactly supported differential form ω over the boundary of some orientable manifold Ω is equal to the integral of its exterior derivative dω over the whole of Ω, i.e.,

This powerful statement is a generalization of the gradient theorem from 1-forms defined on one-dimensional manifolds to differential forms defined on manifolds of arbitrary dimension.

The converse statement of the gradient theorem also has a powerful generalization in terms of differential forms on manifolds. In particular, suppose ω is a form defined on a contractible domain, and the integral of ω over any closed manifold is zero. Then there exists a form ψ such that ω = dψ. Thus, on a contractible domain, every closed form is exact. This result is summarized by the Poincaré lemma.

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.

In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or and the divergence theorem is the case of a volume in Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems published by mathematician Emmy Noether in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric field on M consists of a metric tensor at each point p of M that varies smoothly with p.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem. In one dimension, it is equivalent to the fundamental theorem of calculus. In three dimensions, it is equivalent to the divergence theorem.

In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the vector field under the line integral being conservative. A conservative vector field is also irrotational; in three dimensions, this means that it has vanishing curl. An irrotational vector field is necessarily conservative provided that the domain is simply connected.

<span class="mw-page-title-main">Scalar potential</span> When potential energy difference depends only on displacement

In mathematical physics, scalar potential describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.

In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green, who discovered Green's theorem.

In physics and mathematics, the Helmholtz decomposition theorem or the fundamental theorem of vector calculus states that certain differentiable vector fields can be resolved into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field. In physics, often only the decomposition of sufficiently smooth, rapidly decaying vector fields in three dimensions is discussed. It is named after Hermann von Helmholtz.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

The diabatic representation as a mathematical tool for theoretical calculations of atomic collisions and of molecular interactions.

In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane.

<span class="mw-page-title-main">Stokes' theorem</span> Theorem in vector calculus

Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence:

Curvilinear coordinates can be formulated in tensor calculus, with important applications in physics and engineering, particularly for describing transportation of physical quantities and deformation of matter in fluid mechanics and continuum mechanics.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. Williamson, Richard E.; Trotter, Hale F. (2004). Multivariable mathematics. Pearson Education International (4th ed.). Upper Saddle River, N.J: Pearson Prentice Hall. p. 374. ISBN   978-0-13-067276-6.
  2. Stewart, James; Clegg, Dan; Watson, Saleem (2021). "16.3 The Fundamental Theorem for Line Integrals". Calculus (Ninth ed.). Australia ; Boston, MA, USA: Cengage. pp. 1182–1185. ISBN   978-1-337-62418-3.
  3. 1 2 Williamson & Trotter 2004, p. 410