Conservative force

Last updated

In physics, a conservative force is a force with the property that the total work done by the force in moving a particle between two points is independent of the path taken. [1] Equivalently, if a particle travels in a closed loop, the total work done (the sum of the force acting along the path multiplied by the displacement) by a conservative force is zero. [2]

Contents

A conservative force depends only on the position of the object. If a force is conservative, it is possible to assign a numerical value for the potential at any point and conversely, when an object moves from one location to another, the force changes the potential energy of the object by an amount that does not depend on the path taken, contributing to the mechanical energy and the overall conservation of energy. If the force is not conservative, then defining a scalar potential is not possible, because taking different paths would lead to conflicting potential differences between the start and end points.

Gravitational force is an example of a conservative force, while frictional force is an example of a non-conservative force.

Other examples of conservative forces are: force in elastic spring, electrostatic force between two electric charges, and magnetic force between two magnetic poles. The last two forces are called central forces as they act along the line joining the centres of two charged/magnetized bodies. A central force is conservative if and only if it is spherically symmetric. [3]

For conservative forces,

where is the conservative force, is the potential energy, and is the position. [4]

Informal definition

Informally, a conservative force can be thought of as a force that conserves mechanical energy. Suppose a particle starts at point A, and there is a force F acting on it. Then the particle is moved around by other forces, and eventually ends up at A again. Though the particle may still be moving, at that instant when it passes point A again, it has traveled a closed path. If the net work done by F at this point is 0, then F passes the closed path test. Any force that passes the closed path test for all possible closed paths is classified as a conservative force.

The gravitational force, spring force, magnetic force (according to some definitions, see below) and electric force (at least in a time-independent magnetic field, see Faraday's law of induction for details) are examples of conservative forces, while friction and air drag are classical examples of non-conservative forces.

For non-conservative forces, the mechanical energy that is lost (not conserved) has to go somewhere else, by conservation of energy. Usually the energy is turned into heat, for example the heat generated by friction. In addition to heat, friction also often produces some sound energy. The water drag on a moving boat converts the boat's mechanical energy into not only heat and sound energy, but also wave energy at the edges of its wake. These and other energy losses are irreversible because of the second law of thermodynamics.

Path independence

Conservative Force Gravity Example.svg

A direct consequence of the closed path test is that the work done by a conservative force on a particle moving between any two points does not depend on the path taken by the particle.

This is illustrated in the figure to the right: The work done by the gravitational force on an object depends only on its change in height because the gravitational force is conservative. The work done by a conservative force is equal to the negative of change in potential energy during that process. For a proof, imagine two paths 1 and 2, both going from point A to point B. The variation of energy for the particle, taking path 1 from A to B and then path 2 backwards from B to A, is 0; thus, the work is the same in path 1 and 2, i.e., the work is independent of the path followed, as long as it goes from A to B.

For example, if a child slides down a frictionless slide, the work done by the gravitational force on the child from the start of the slide to the end is independent of the shape of the slide; it only depends on the vertical displacement of the child.

Mathematical description

A force field F, defined everywhere in space (or within a simply-connected volume of space), is called a conservative force or conservative vector field if it meets any of these three equivalent conditions:

  1. The curl of F is the zero vector: where in two dimensions this reduces to:
  2. There is zero net work (W) done by the force when moving a particle through a trajectory that starts and ends in the same place:
  3. The force can be written as the negative gradient of a potential, :
Proof that these three conditions are equivalent when F is a force field
1 implies 2
Let C be any simple closed path (i.e., a path that starts and ends at the same point and has no self-intersections), and consider a surface S of which C is the boundary. Then Stokes' theorem says that If the curl of F is zero the left hand side is zero – therefore statement 2 is true.
2 implies 3
Assume that statement 2 holds. Let c be a simple curve from the origin to a point and define a function The fact that this function is well-defined (independent of the choice of c) follows from statement 2. Anyway, from the fundamental theorem of calculus, it follows that So statement 2 implies statement 3 (see full proof).
3 implies 1
Finally, assume that the third statement is true. A well-known vector calculus identity states that the curl of the gradient of any function is 0. (See proof.) Therefore, if the third statement is true, then the first statement must be true as well. This shows that statement 1 implies 2, 2 implies 3, and 3 implies 1. Therefore, all three are equivalent, Q.E.D. (The equivalence of 1 and 3 is also known as (one aspect of) Helmholtz's theorem.)

The term conservative force comes from the fact that when a conservative force exists, it conserves mechanical energy. The most familiar conservative forces are gravity, the electric force (in a time-independent magnetic field, see Faraday's law), and spring force.

Many forces (particularly those that depend on velocity) are not force fields. In these cases, the above three conditions are not mathematically equivalent. For example, the magnetic force satisfies condition 2 (since the work done by a magnetic field on a charged particle is always zero), but does not satisfy condition 3, and condition 1 is not even defined (the force is not a vector field, so one cannot evaluate its curl). Accordingly, some authors classify the magnetic force as conservative, [5] while others do not. [6] The magnetic force is an unusual case; most velocity-dependent forces, such as friction, do not satisfy any of the three conditions, and therefore are unambiguously nonconservative.

Non-conservative force

Despite conservation of total energy, non-conservative forces can arise in classical physics due to neglected degrees of freedom or from time-dependent potentials. [7] Many non-conservative forces may be perceived as macroscopic effects of small-scale conservative forces. [8] For instance, friction may be treated without violating conservation of energy by considering the motion of individual molecules; however, that means every molecule's motion must be considered rather than handling it through statistical methods. For macroscopic systems the non-conservative approximation is far easier to deal with than millions of degrees of freedom.

Examples of non-conservative forces are friction and non-elastic material stress. Friction has the effect of transferring some of the energy from the large-scale motion of the bodies to small-scale movements in their interior, and therefore appear non-conservative on a large scale. [8] General relativity is non-conservative, as seen in the anomalous precession of Mercury's orbit.[ citation needed ] However, general relativity does conserve a stress–energy–momentum pseudotensor.

See also

Related Research Articles

<span class="mw-page-title-main">Force</span> Influence that can change motion of an object

A force is an influence that can cause an object to change its velocity unless counterbalanced by other forces. The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N), and force is often represented by the symbol F.

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.

<span class="mw-page-title-main">Potential energy</span> Energy held by an object because of its position relative to other objects

In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. The term potential energy was introduced by the 19th-century Scottish engineer and physicist William Rankine, although it has links to the ancient Greek philosopher Aristotle's concept of potentiality.

Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows:

  1. A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force.
  2. At any instant of time, the net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum is changing with time.
  3. If two bodies exert forces on each other, these forces have the same magnitude but opposite directions.
<span class="mw-page-title-main">Electric potential</span> Line integral of the electric field

Electric potential is defined as the amount of work/energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field. More precisely, the electric potential is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. The motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is earth or a point at infinity, although any point can be used.

<span class="mw-page-title-main">Work (physics)</span> Process of energy transfer to an object via force application through displacement

In science, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

<span class="mw-page-title-main">Aharonov–Bohm effect</span> Electromagnetic quantum-mechanical effect in regions of zero magnetic and electric field

The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum-mechanical phenomenon in which an electrically charged particle is affected by an electromagnetic potential, despite being confined to a region in which both the magnetic field and electric field are zero. The underlying mechanism is the coupling of the electromagnetic potential with the complex phase of a charged particle's wave function, and the Aharonov–Bohm effect is accordingly illustrated by interference experiments.

In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the vector field under the line integral being conservative. A conservative vector field is also irrotational; in three dimensions, this means that it has vanishing curl. An irrotational vector field is necessarily conservative provided that the domain is simply connected.

<span class="mw-page-title-main">Scalar potential</span> When potential energy difference depends only on displacement

In mathematical physics, scalar potential describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.

In physics, chemistry, a potential gradient is the local rate of change of the potential with respect to displacement, i.e. spatial derivative, or gradient. This quantity frequently occurs in equations of physical processes because it leads to some form of flux.

<span class="mw-page-title-main">Mechanical energy</span> Sum of potential and kinetic energy

In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, then the mechanical energy is constant. If an object moves in the opposite direction of a conservative net force, the potential energy will increase; and if the speed of the object changes, the kinetic energy of the object also changes. In all real systems, however, nonconservative forces, such as frictional forces, will be present, but if they are of negligible magnitude, the mechanical energy changes little and its conservation is a useful approximation. In elastic collisions, the kinetic energy is conserved, but in inelastic collisions some mechanical energy may be converted into thermal energy. The equivalence between lost mechanical energy and an increase in temperature was discovered by James Prescott Joule.

A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

In classical mechanics, a central force on an object is a force that is directed towards or away from a point called center of force. where is the force, F is a vector valued force function, F is a scalar valued force function, r is the position vector, ||r|| is its length, and is the corresponding unit vector.

<span class="mw-page-title-main">Force field (physics)</span> Region of space in which a force acts

In physics, a force field is a vector field corresponding with a non-contact force acting on a particle at various positions in space. Specifically, a force field is a vector field , where is the force that a particle would feel if it were at the position .

The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space rather than just the real line.

<span class="mw-page-title-main">Gauss's law for magnetism</span> Foundational law of classical magnetism

In physics, Gauss's law for magnetism is one of the four Maxwell's equations that underlie classical electrodynamics. It states that the magnetic field B has divergence equal to zero, in other words, that it is a solenoidal vector field. It is equivalent to the statement that magnetic monopoles do not exist. Rather than "magnetic charges", the basic entity for magnetism is the magnetic dipole.

<span class="mw-page-title-main">Classical mechanics</span> Description of large objects physics

Classical mechanics is a physical theory describing the motion of objects such as projectiles, parts of machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics involved substantial change in the methods and philosophy of physics. The qualifier classical distinguishes this type of mechanics from physics developed after the revolutions in physics of the early 20th century, all of which revealed limitations in classical mechanics.

<span class="mw-page-title-main">Lagrangian mechanics</span> Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, Mécanique analytique.

<span class="mw-page-title-main">Field (physics)</span> Physical quantities taking values at each point in space and time

In science, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. A weather map, with the surface temperature described by assigning a number to each point on the map, is an example of a scalar field. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.

References

  1. HyperPhysics - Conservative force
  2. Louis N. Hand, Janet D. Finch (1998). Analytical Mechanics. Cambridge University Press. p. 41. ISBN   0-521-57572-9.
  3. Taylor, John R. (2005). Classical Mechanics. Sausalito, Calif.: Univ. Science Books. pp. 133–138. ISBN   1-891389-22-X.
  4. "Conservative Forces Definition, Formula, Examples". physicscatalyst.com. Retrieved 2024-01-02.
  5. For example, P. K. Srivastava (2004). Mechanics. New Age International Pub. (P) Limited. p. 94. ISBN   9788122411126 . Retrieved 2018-11-20.: "In general, a force which depends explicitly upon the velocity of the particle is not conservative. However, the magnetic force (qv×B) can be included among conservative forces in the sense that it acts perpendicular to velocity and hence work done is always zero". Web link
  6. For example, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory, Rüdiger and Hollerbach, page 178, Web link
  7. Friedhelm Kuypers. Klassische Mechanik. WILEY-VCH 2005. Page 9.
  8. 1 2 Tom W. B. Kibble, Frank H. Berkshire. Classical mechanics. (5th ed). Imperial College Press 2004 ISBN   1860944248