Damping

Last updated
Underdamped spring-mass system with z < 1 Damped spring.gif
Underdamped spring–mass system with ζ < 1

In physical systems, damping is the loss of energy of an oscillating system by dissipation. [1] [2] Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. [3] Examples of damping include viscous damping in a fluid (see viscous drag), surface friction, radiation, [1] resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes [4] (ex. Suspension (mechanics)). Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.

Contents

The damping ratio is a dimensionless measure describing how oscillations in a system decay after a disturbance. Many systems exhibit oscillatory behavior when they are disturbed from their position of static equilibrium. A mass suspended from a spring, for example, might, if pulled and released, bounce up and down. On each bounce, the system tends to return to its equilibrium position, but overshoots it. Sometimes losses (e.g. frictional) damp the system and can cause the oscillations to gradually decay in amplitude towards zero or attenuate. The damping ratio is a measure describing how rapidly the oscillations decay from one bounce to the next.

The damping ratio is a system parameter, denoted by ζ ("zeta"), that can vary from undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1).

The behaviour of oscillating systems is often of interest in a diverse range of disciplines that include control engineering, chemical engineering, mechanical engineering, structural engineering, and electrical engineering. The physical quantity that is oscillating varies greatly, and could be the swaying of a tall building in the wind, or the speed of an electric motor, but a normalised, or non-dimensionalised approach can be convenient in describing common aspects of behavior.

Oscillation cases

Depending on the amount of damping present, a system exhibits different oscillatory behaviors and speeds.

Damped sine wave

Plot of a damped sinusoidal wave represented as the function
y
(
t
)
=
e
-
t
cos
[?]
(
2
p
t
)
{\displaystyle y(t)=e^{-t}\cos(2\pi t)} DampedCosine.svg
Plot of a damped sinusoidal wave represented as the function

A damped sine wave or damped sinusoid is a sinusoidal function whose amplitude approaches zero as time increases. It corresponds to the underdamped case of damped second-order systems, or underdamped second-order differential equations. [6] Damped sine waves are commonly seen in science and engineering, wherever a harmonic oscillator is losing energy faster than it is being supplied. A true sine wave starting at time = 0 begins at the origin (amplitude = 0). A cosine wave begins at its maximum value due to its phase difference from the sine wave. A given sinusoidal waveform may be of intermediate phase, having both sine and cosine components. The term "damped sine wave" describes all such damped waveforms, whatever their initial phase.

The most common form of damping, which is usually assumed, is the form found in linear systems. This form is exponential damping, in which the outer envelope of the successive peaks is an exponential decay curve. That is, when you connect the maximum point of each successive curve, the result resembles an exponential decay function. The general equation for an exponentially damped sinusoid may be represented as: where:

Other important parameters include:

Damping ratio definition

The effect of varying damping ratio on a second-order system. 2nd Order Damping Ratios.svg
The effect of varying damping ratio on a second-order system.

The damping ratio is a parameter, usually denoted by ζ (Greek letter zeta), [7] that characterizes the frequency response of a second-order ordinary differential equation. It is particularly important in the study of control theory. It is also important in the harmonic oscillator. In general, systems with higher damping ratios (one or greater) will demonstrate more of a damping effect. Underdamped systems have a value of less than one. Critically damped systems have a damping ratio of exactly 1, or at least very close to it.

The damping ratio provides a mathematical means of expressing the level of damping in a system relative to critical damping. For a damped harmonic oscillator with mass m, damping coefficient c, and spring constant k, it can be defined as the ratio of the damping coefficient in the system's differential equation to the critical damping coefficient:

where the system's equation of motion is

. [8]

and the corresponding critical damping coefficient is

or

where

is the natural frequency of the system.

The damping ratio is dimensionless, being the ratio of two coefficients of identical units.

Derivation

Using the natural frequency of a harmonic oscillator and the definition of the damping ratio above, we can rewrite this as:

This equation is more general than just the mass–spring system, and also applies to electrical circuits and to other domains. It can be solved with the approach

where C and s are both complex constants, with s satisfying

Two such solutions, for the two values of s satisfying the equation, can be combined to make the general real solutions, with oscillatory and decaying properties in several regimes:

Phase portrait of damped oscillator, with increasing damping strength. It starts at undamped, proceeds to underdamped, then critically damped, then overdamped. Phase portrait of damped oscillator, with increasing damping strength.gif
Phase portrait of damped oscillator, with increasing damping strength. It starts at undamped, proceeds to underdamped, then critically damped, then overdamped.
Undamped
Is the case where corresponds to the undamped simple harmonic oscillator, and in that case the solution looks like , as expected. This case is extremely rare in the natural world with the closest examples being cases where friction was purposefully reduced to minimal values.
Underdamped
If s is a pair of complex values, then each complex solution term is a decaying exponential combined with an oscillatory portion that looks like . This case occurs for , and is referred to as underdamped (e.g., bungee cable).
Overdamped
If s is a pair of real values, then the solution is simply a sum of two decaying exponentials with no oscillation. This case occurs for , and is referred to as overdamped. Situations where overdamping is practical tend to have tragic outcomes if overshooting occurs, usually electrical rather than mechanical. For example, landing a plane in autopilot: if the system overshoots and releases landing gear too late, the outcome would be a disaster.
Critically damped
The case where is the border between the overdamped and underdamped cases, and is referred to as critically damped. This turns out to be a desirable outcome in many cases where engineering design of a damped oscillator is required (e.g., a door closing mechanism).

Q factor and decay rate

The Q factor, damping ratio ζ, and exponential decay rate α are related such that [9]

When a second-order system has (that is, when the system is underdamped), it has two complex conjugate poles that each have a real part of ; that is, the decay rate parameter represents the rate of exponential decay of the oscillations. A lower damping ratio implies a lower decay rate, and so very underdamped systems oscillate for long times. [10] For example, a high quality tuning fork, which has a very low damping ratio, has an oscillation that lasts a long time, decaying very slowly after being struck by a hammer.

Logarithmic decrement

Dampingratio111.svg

For underdamped vibrations, the damping ratio is also related to the logarithmic decrement . The damping ratio can be found for any two peaks, even if they are not adjacent. [11] For adjacent peaks: [12]

where

where x0 and x1 are amplitudes of any two successive peaks.

As shown in the right figure:

where , are amplitudes of two successive positive peaks and , are amplitudes of two successive negative peaks.

Percentage overshoot

In control theory, overshoot refers to an output exceeding its final, steady-state value. [13] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one.

The percentage overshoot (PO) is related to damping ratio (ζ) by:

Conversely, the damping ratio (ζ) that yields a given percentage overshoot is given by:

Examples and applications

Viscous drag

When an object is falling through the air, the only force opposing its freefall is air resistance. An object falling through water or oil would slow down at a greater rate, until eventually reaching a steady-state velocity as the drag force comes into equilibrium with the force from gravity. This is the concept of viscous drag, which for example is applied in automatic doors or anti-slam doors. [14]

Damping in electrical systems

Electrical systems that operate with alternating current (AC) use resistors to damp LC resonant circuits. [14]

Magnetic damping and Magnetorheological damping

Kinetic energy that causes oscillations is dissipated as heat by electric eddy currents which are induced by passing through a magnet's poles, either by a coil or aluminum plate. Eddy currents are a key component of electromagnetic induction where they set up a magnetic flux directly opposing the oscillating movement, creating a resistive force. [15] In other words, the resistance caused by magnetic forces slows a system down. An example of this concept being applied is the brakes on roller coasters. [16]

Magnetorheological Dampers (MR Dampers) use Magnetorheological fluid, which changes viscosity when subjected to a magnetic field. In this case, Magnetorheological damping may be considered an interdisciplinary form of damping with both viscous and magnetic damping mechanisms. [17] [18]

Related Research Articles

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x: where k is a positive constant.

<span class="mw-page-title-main">Oscillation</span> Repetitive variation of some measure about a central value

Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such as those between atoms.

<span class="mw-page-title-main">Simple harmonic motion</span> To-and-fro periodic motion in science and engineering

In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.

<span class="mw-page-title-main">Resonance</span> Physical characteristic of oscillating systems

Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration that matches its natural frequency. When this happens, the object or system absorbs energy from the external force and starts vibrating with a larger amplitude. Resonance can occur in various systems, such as mechanical, electrical, or acoustic systems, and it is often desirable in certain applications, such as musical instruments or radio receivers. However, resonance can also be detrimental, leading to excessive vibrations or even structural failure in some cases.

<i>Q</i> factor Parameter describing the longevity of energy in a resonator relative to its resonant frequency

In physics and engineering, the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost in one radian of the cycle of oscillation. Q factor is alternatively defined as the ratio of a resonator's centre frequency to its bandwidth when subject to an oscillating driving force. These two definitions give numerically similar, but not identical, results. Higher Q indicates a lower rate of energy loss and the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.

<span class="mw-page-title-main">Partition function (statistical mechanics)</span> Function in thermodynamics and statistical physics

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

<span class="mw-page-title-main">Step response</span> Time behavior of a system controlled by Heaviside step functions

The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory, step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time. The concept can be extended to the abstract mathematical notion of a dynamical system using an evolution parameter.

In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value. These values may be expressed as ratios or, equivalently, as percentages with respect to a given reference value. In analog electronics and digital electronics, these percentages are commonly the 10% and 90% of the output step height: however, other values are commonly used. For applications in control theory, according to Levine, rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones. According to Orwiler, the term "rise time" applies to either positive or negative step response, even if a displayed negative excursion is popularly termed fall time.

In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. It is named after Carl Gauss, Rodion Kuzmin, and Eduard Wirsing. It occurs in the study of continued fractions; it is also related to the Riemann zeta function.

Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables. This technique can simplify and parameterize problems where measured units are involved. It is closely related to dimensional analysis. In some physical systems, the term scaling is used interchangeably with nondimensionalization, in order to suggest that certain quantities are better measured relative to some appropriate unit. These units refer to quantities intrinsic to the system, rather than units such as SI units. Nondimensionalization is not the same as converting extensive quantities in an equation to intensive quantities, since the latter procedure results in variables that still carry units.

<span class="mw-page-title-main">Settling time</span> Time required for the output of an amplifier to stabilize

In control theory the settling time of a dynamical system such as an amplifier or other output device is the time elapsed from the application of an ideal instantaneous step input to the time at which the amplifier output has entered and remained within a specified error band.

In the field of ship design and design of other floating structures, a response amplitude operator (RAO) is an engineering statistic, or set of such statistics, that are used to determine the likely behavior of a ship when operating at sea. Known by the acronym of RAO, response amplitude operators are usually obtained from models of proposed ship designs tested in a model basin, or from running specialized CFD computer programs, often both. RAOs are usually calculated for all ship motions and for all wave headings.

<span class="mw-page-title-main">Parametric oscillator</span> Harmonic oscillator whose parameters oscillate in time

A parametric oscillator is a driven harmonic oscillator in which the oscillations are driven by varying some parameters of the system at some frequencies, typically different from the natural frequency of the oscillator. A simple example of a parametric oscillator is a child pumping a playground swing by periodically standing and squatting to increase the size of the swing's oscillations. The child's motions vary the moment of inertia of the swing as a pendulum. The "pump" motions of the child must be at twice the frequency of the swing's oscillations. Examples of parameters that may be varied are the oscillator's resonance frequency and damping .

<span class="mw-page-title-main">Logarithmic decrement</span> Measure for the damping of an oscillator

Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.

<span class="mw-page-title-main">Vibration</span> Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely, or random if the oscillations can only be analysed statistically.

<span class="mw-page-title-main">Overshoot (signal)</span> When a signal or function exceeds its target

In signal processing, control theory, electronics, and mathematics, overshoot is the occurrence of a signal or function exceeding its target. Undershoot is the same phenomenon in the opposite direction. It arises especially in the step response of bandlimited systems such as low-pass filters. It is often followed by ringing, and at times conflated with the latter.

<span class="mw-page-title-main">RLC circuit</span> Resistor Inductor Capacitor Circuit

An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.

<span class="mw-page-title-main">Mass-spring-damper model</span> Concept in physics

The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity. Packages such as MATLAB may be used to run simulations of such models. As well as engineering simulation, these systems have applications in computer graphics and computer animation.

An impulse vector, also known as Kang vector, is a mathematical tool used to graphically design and analyze input shapers that can suppress residual vibration. The impulse vector can be applied to both undamped and underdamped systems, as well as to both positive and negative impulses in a unified manner. The impulse vector makes it easy to obtain impulse time and magnitude of the input shaper graphically. A vector concept for an input shaper was first introduced by W. Singhose for undamped systems with positive impulses. Building on this idea, C.-G. Kang introduced the impulse vector to generalize Singhose's idea to undamped and underdamped systems with positive and negative impulses.

Composite methods are an approach applied in structural dynamics and related fields. They combine various methods in each time step, in order to acquire the advantages of different methods. The existing composite methods show satisfactory accuracy and powerful numerical dissipation, which is particularly useful for solving stiff problems and differential-algebraic equations.

References

  1. 1 2 Escudier, Marcel; Atkins, Tony (2019). "A Dictionary of Mechanical Engineering". Oxford Reference. doi:10.1093/acref/9780198832102.001.0001. ISBN   978-0-19-883210-2.
  2. Steidel (1971). An Introduction to Mechanical Vibrations. John Wiley & Sons. p. 37. damped, which is the term used in the study of vibration to denote a dissipation of energy
  3. Crandall, S. H. (January 1970). "The role of damping in vibration theory". Journal of Sound and Vibration. 11 (1): 3–18, IN1. Bibcode:1970JSV....11....3C. doi:10.1016/s0022-460x(70)80105-5.
  4. J. P. Meijaard; J. M. Papadopoulos; A. Ruina & A. L. Schwab (2007). "Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review". Proceedings of the Royal Society A . 463 (2084): 1955–1982. Bibcode:2007RSPSA.463.1955M. doi:10.1098/rspa.2007.1857. S2CID   18309860. lean and steer perturbations die away in a seemingly damped fashion. However, the system has no true damping and conserves energy. The energy in the lean and steer oscillations is transferred to the forward speed rather than being dissipated.
  5. Urone, Paul Peter; Hinrichs, Roger (2016). "16.7 Damped Harmonic Motion". College Physics. OpenStax via University of Central Florida.
  6. Douglas C. Giancoli (2000). [Physics for Scientists and Engineers with Modern Physics (3rd Edition)]. Prentice Hall. p. 387 ISBN   0-13-021517-1
  7. Alciatore, David G. (2007). Introduction to Mechatronics and Measurement (3rd ed.). McGraw Hill. ISBN   978-0-07-296305-2.
  8. Rahman, J.; Mushtaq, M.; Ali, A.; Anjam, Y.N; Nazir, S. (2014). "Modelling damped mass spring system in MATHLAB Simulink". Journal of Faculty of Engineering & Technology. 2.
  9. William McC. Siebert. Circuits, Signals, and Systems. MIT Press.
  10. Ming Rao and Haiming Qiu (1993). Process control engineering: a textbook for chemical, mechanical and electrical engineers. CRC Press. p. 96. ISBN   978-2-88124-628-9.
  11. "Dynamics and Vibrations: Notes: Free Damped Vibrations".
  12. "Damping Evaluation". 19 October 2015.
  13. Kuo, Benjamin C & Golnaraghi M F (2003). Automatic control systems (Eighth ed.). NY: Wiley. p. §7.3 p. 236–237. ISBN   0-471-13476-7.
  14. 1 2 "damping | Definition, Types, & Examples". Encyclopedia Britannica. Retrieved 2021-06-09.
  15. Gupta, B. R. (2001). Principles of Electrical, Electronics and Instrumentation Engineering. S. chand Limited. p. 338. ISBN   9788121901031.
  16. "Eddy Currents and Magnetic Damping | Physics". courses.lumenlearning.com. Retrieved 2021-06-09.
  17. LEE, DUG-YOUNG; WERELEY, NORMAN M. (June 2000). "Quasi-Steady Herschel-Bulkley Analysis of Electro- and Magneto-Rheological Flow Mode Dampers". Electro-Rheological Fluids and Magneto-Rheological Suspensions. WORLD SCIENTIFIC: 579–586. doi:10.1142/9789812793607_0066. ISBN   978-981-02-4258-9.
  18. Savaresi, Sergio M.; Poussot-Vassal, Charles; Spelta, Cristiano; Sename, Oliver; Dugard, Luc (2010-01-01), Savaresi, Sergio M.; Poussot-Vassal, Charles; Spelta, Cristiano; Sename, Oliver (eds.), "CHAPTER 2 - Semi-Active Suspension Technologies and Models", Semi-Active Suspension Control Design for Vehicles, Boston: Butterworth-Heinemann, pp. 15–39, doi:10.1016/b978-0-08-096678-6.00002-x, ISBN   978-0-08-096678-6 , retrieved 2023-07-15