Frequency

Last updated
Frequency
luuktumthrrmchaati.gif
A pendulum making 25 complete oscillations in 60 s, a frequency of 0.416  Hz
Common symbols
f, ν
SI unit hertz (Hz)
Other units
In SI base units s −1
Derivations from
other quantities
  • f = 1 / T
Dimension

Frequency (symbol f), most often measured in hertz (symbol: Hz), is the number of occurrences of a repeating event per unit of time. [1] It is also occasionally referred to as temporal frequency for clarity and to distinguish it from spatial frequency . Ordinary frequency is related to angular frequency (symbol ω, with SI unit radian per second) by a factor of 2π. The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency: f = 1/T. [2]

Contents

Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light.

For example, if a heart beats at a frequency of 120 times per minute (2 hertz), the period—the interval between beats—is half a second (60 seconds divided by 120 beats).

Definitions and units

A pendulum with a period of 2.8 s and a frequency of 0.36 Hz Pendulum-no-text.gif
A pendulum with a period of 2.8 s and a frequency of 0.36  Hz

For cyclical phenomena such as oscillations, waves, or for examples of simple harmonic motion, the term frequency is defined as the number of cycles or repetitions per unit of time. The conventional symbol for frequency is f or ν (the Greek letter nu) is also used. [3] The periodT is the time taken to complete one cycle of an oscillation or rotation. The frequency and the period are related by the equation [4]

The term temporal frequency is used to emphasise that the frequency is characterised by the number of occurrences of a repeating event per unit time.

The SI unit of frequency is the hertz (Hz), [4] named after the German physicist Heinrich Hertz by the International Electrotechnical Commission in 1930. It was adopted by the CGPM (Conférence générale des poids et mesures) in 1960, officially replacing the previous name, cycle per second (cps). The SI unit for the period, as for all measurements of time, is the second. [5] A traditional unit of frequency used with rotating mechanical devices, where it is termed rotational frequency , is revolution per minute, abbreviated r/min or rpm. [6] 60 rpm is equivalent to one hertz. [7]

Period versus frequency

As a matter of convenience, longer and slower waves, such as ocean surface waves, are more typically described by wave period rather than frequency. [8] Short and fast waves, like audio and radio, are usually described by their frequency. Some commonly used conversions are listed below:

FrequencyPeriod
1 mHz (10−3 Hz)1 ks (103 s)
1 Hz (100 Hz)1 s (100 s)
1 kHz (103 Hz)1 ms (10−3 s)
1 MHz (106 Hz)1 μs (10−6 s)
1 GHz (109 Hz)1 ns (10−9 s)
1 THz (1012 Hz)1 ps (10−12 s)
Diagram of the relationship between the different types of frequency and other wave properties. In this diagram, x is the input to the function represented by the arrow. Commutative diagram of harmonic wave properties.svg
Diagram of the relationship between the different types of frequency and other wave properties. In this diagram, x is the input to the function represented by the arrow.
The unit of angular frequency is the radian per second (rad/s) but, for discrete-time signals, can also be expressed as radians per sampling interval, which is a dimensionless quantity. Angular frequency is frequency multiplied by 2π.

In wave propagation

For periodic waves in nondispersive media (that is, media in which the wave speed is independent of frequency), frequency has an inverse relationship to the wavelength, λ (lambda). Even in dispersive media, the frequency f of a sinusoidal wave is equal to the phase velocity v of the wave divided by the wavelength λ of the wave:

In the special case of electromagnetic waves in vacuum, then v = c, where c is the speed of light in vacuum, and this expression becomes

When monochromatic waves travel from one medium to another, their frequency remains the same—only their wavelength and speed change.

Measurement

Measurement of frequency can be done in the following ways:

Counting

Calculating the frequency of a repeating event is accomplished by counting the number of times that event occurs within a specific time period, then dividing the count by the period. For example, if 71 events occur within 15 seconds the frequency is:

If the number of counts is not very large, it is more accurate to measure the time interval for a predetermined number of occurrences, rather than the number of occurrences within a specified time.[ citation needed ] The latter method introduces a random error into the count of between zero and one count, so on average half a count. This is called gating error and causes an average error in the calculated frequency of , or a fractional error of where is the timing interval and is the measured frequency. This error decreases with frequency, so it is generally a problem at low frequencies where the number of counts N is small.

Resonant reed frequency meter.jpg
Czestosciomierz-49.9Hz.jpg
A resonant-reed frequency meter, an obsolete device used from about 1900 to the 1940s for measuring the frequency of alternating current. It consists of a strip of metal with reeds of graduated lengths, vibrated by an electromagnet. When the unknown frequency is applied to the electromagnet, the reed which is resonant at that frequency will vibrate with large amplitude, visible next to the scale.

Stroboscope

An old method of measuring the frequency of rotating or vibrating objects is to use a stroboscope. This is an intense repetitively flashing light (strobe light) whose frequency can be adjusted with a calibrated timing circuit. The strobe light is pointed at the rotating object and the frequency adjusted up and down. When the frequency of the strobe equals the frequency of the rotating or vibrating object, the object completes one cycle of oscillation and returns to its original position between the flashes of light, so when illuminated by the strobe the object appears stationary. Then the frequency can be read from the calibrated readout on the stroboscope. A downside of this method is that an object rotating at an integer multiple of the strobing frequency will also appear stationary.

Frequency counter

Modern frequency counter Frequency counter.jpg
Modern frequency counter

Higher frequencies are usually measured with a frequency counter. This is an electronic instrument which measures the frequency of an applied repetitive electronic signal and displays the result in hertz on a digital display. It uses digital logic to count the number of cycles during a time interval established by a precision quartz time base. Cyclic processes that are not electrical, such as the rotation rate of a shaft, mechanical vibrations, or sound waves, can be converted to a repetitive electronic signal by transducers and the signal applied to a frequency counter. As of 2018, frequency counters can cover the range up to about 100 GHz. This represents the limit of direct counting methods; frequencies above this must be measured by indirect methods.

Heterodyne methods

Above the range of frequency counters, frequencies of electromagnetic signals are often measured indirectly utilizing heterodyning (frequency conversion). A reference signal of a known frequency near the unknown frequency is mixed with the unknown frequency in a nonlinear mixing device such as a diode. This creates a heterodyne or "beat" signal at the difference between the two frequencies. If the two signals are close together in frequency the heterodyne is low enough to be measured by a frequency counter. This process only measures the difference between the unknown frequency and the reference frequency. To convert higher frequencies, several stages of heterodyning can be used. Current research is extending this method to infrared and light frequencies (optical heterodyne detection).

Examples

Light

Complete spectrum of electromagnetic radiation with the visible portion highlighted EM spectrum.svg
Complete spectrum of electromagnetic radiation with the visible portion highlighted

Visible light is an electromagnetic wave, consisting of oscillating electric and magnetic fields traveling through space. The frequency of the wave determines its color: 400 THz (4×1014 Hz) is red light, 800 THz (8×1014 Hz) is violet light, and between these (in the range 400–800 THz) are all the other colors of the visible spectrum. An electromagnetic wave with a frequency less than 4×1014 Hz will be invisible to the human eye; such waves are called infrared (IR) radiation. At even lower frequency, the wave is called a microwave, and at still lower frequencies it is called a radio wave. Likewise, an electromagnetic wave with a frequency higher than 8×1014 Hz will also be invisible to the human eye; such waves are called ultraviolet (UV) radiation. Even higher-frequency waves are called X-rays, and higher still are gamma rays.

All of these waves, from the lowest-frequency radio waves to the highest-frequency gamma rays, are fundamentally the same, and they are all called electromagnetic radiation. They all travel through vacuum at the same speed (the speed of light), giving them wavelengths inversely proportional to their frequencies.

where c is the speed of light (c in vacuum or less in other media), f is the frequency and λ is the wavelength.

In dispersive media, such as glass, the speed depends somewhat on frequency, so the wavelength is not quite inversely proportional to frequency.

Sound

The sound wave spectrum, with rough guide of some applications Ultrasound range diagram.svg
The sound wave spectrum, with rough guide of some applications

Sound propagates as mechanical vibration waves of pressure and displacement, in air or other substances. [10] In general, frequency components of a sound determine its "color", its timbre. When speaking about the frequency (in singular) of a sound, it means the property that most determines its pitch. [11]

The frequencies an ear can hear are limited to a specific range of frequencies. The audible frequency range for humans is typically given as being between about 20 Hz and 20,000 Hz (20 kHz), though the high frequency limit usually reduces with age. Other species have different hearing ranges. For example, some dog breeds can perceive vibrations up to 60,000 Hz. [12]

In many media, such as air, the speed of sound is approximately independent of frequency, so the wavelength of the sound waves (distance between repetitions) is approximately inversely proportional to frequency.

Line current

In Europe, Africa, Australia, southern South America, most of Asia, and Russia, the frequency of the alternating current in household electrical outlets is 50 Hz (close to the tone G), whereas in North America and northern South America, the frequency of the alternating current in household electrical outlets is 60 Hz (between the tones B and B; that is, a minor third above the European frequency). The frequency of the 'hum' in an audio recording can show in which of these general regions the recording was made.

Aperiodic frequency

Aperiodic frequency is the rate of incidence or occurrence of non-cyclic phenomena, including random processes such as radioactive decay. It is expressed with the unit of reciprocal second (s−1) [13] or, in the case of radioactivity, becquerels. [14]

It is defined as a rate, f = Nt, involving the number of entities counted or the number of events happened (N) during a given time durationt);[ citation needed ] it is a physical quantity of type temporal rate.

See also

Notes

  1. The term spatial period, sometimes used in place of wavelength , analogously corresponds to the (temporal) period. [9]

Related Research Articles

<span class="mw-page-title-main">Fundamental frequency</span> Lowest frequency of a periodic waveform, such as sound

The fundamental frequency, often referred to simply as the fundamental, is defined as the lowest frequency of a periodic waveform. In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial present. In terms of a superposition of sinusoids, the fundamental frequency is the lowest frequency sinusoidal in the sum of harmonically related frequencies, or the frequency of the difference between adjacent frequencies. In some contexts, the fundamental is usually abbreviated as f0, indicating the lowest frequency counting from zero. In other contexts, it is more common to abbreviate it as f1, the first harmonic.

<span class="mw-page-title-main">Hertz</span> SI unit for frequency

The hertz is the unit of frequency in the International System of Units (SI), equivalent to one event per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one hertz is the reciprocal of one second. It is named after Heinrich Rudolf Hertz (1857–1894), the first person to provide conclusive proof of the existence of electromagnetic waves. Hertz are commonly expressed in multiples: kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz).

<span class="mw-page-title-main">Refractive index</span> Ratio of the speed of light in vacuum to that in the medium

In optics, the refractive index of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.

<span class="mw-page-title-main">Wavelength</span> Distance over which a waves shape repeats

In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term "wavelength" is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

<span class="mw-page-title-main">Circular polarization</span> Polarization state

In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude and is rotating at a constant rate in a plane perpendicular to the direction of the wave.

<span class="mw-page-title-main">Aliasing</span> Signal processing effect

In signal processing and related disciplines, aliasing is the overlapping of frequency components resulting from a sample rate below the Nyquist rate. This overlap results in distortion or artifacts when the signal is reconstructed from samples which causes the reconstructed signal to differ from the original continuous signal. Aliasing that occurs in signals sampled in time, for instance in digital audio or the stroboscopic effect, is referred to as temporal aliasing. Aliasing in spatially sampled signals is referred to as spatial aliasing.

<span class="mw-page-title-main">Wavenumber</span> Spatial frequency of a wave

In the physical sciences, the wavenumber, also known as repetency, is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. It is analogous to temporal frequency, which is defined as the number of wave cycles per unit time or radians per unit time.

The jansky is a non-SI unit of spectral flux density, or spectral irradiance, used especially in radio astronomy. It is equivalent to 10−26 watts per square metre per hertz.

<span class="mw-page-title-main">Angular frequency</span> Rate of change of angle

In physics, angular frequency, also called angular speed and angular rate, is a scalar measure of the angle rate or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function . Angular frequency is the magnitude of the pseudovector quantity angular velocity.

Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

<span class="mw-page-title-main">String vibration</span> A wave

A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos.

The pulse-repetition frequency (PRF) is the number of pulses of a repeating signal in a specific time unit. The term is used within a number of technical disciplines, notably radar.

<span class="mw-page-title-main">Acousto-optic modulator</span> Device which diffracts light via sound waves

An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves. They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric transducer is attached to a material such as glass. An oscillating electric signal drives the transducer to vibrate, which creates sound waves in the material. These can be thought of as moving periodic planes of expansion and compression that change the index of refraction. Incoming light scatters off the resulting periodic index modulation and interference occurs similar to Bragg diffraction. The interaction can be thought of as a three-wave mixing process resulting in sum-frequency generation or difference-frequency generation between phonons and photons.

Optical resolution describes the ability of an imaging system to resolve detail, in the object that is being imaged. An imaging system may have many individual components, including one or more lenses, and/or recording and display components. Each of these contributes to the optical resolution of the system; the environment in which the imaging is done often is a further important factor.

<span class="mw-page-title-main">Spatial frequency</span> Characteristic of any structure that is periodic across a position in space

In mathematics, physics, and engineering, spatial frequency is a characteristic of any structure that is periodic across position in space. The spatial frequency is a measure of how often sinusoidal components of the structure repeat per unit of distance.

A cyclostationary process is a signal having statistical properties that vary cyclically with time. A cyclostationary process can be viewed as multiple interleaved stationary processes. For example, the maximum daily temperature in New York City can be modeled as a cyclostationary process: the maximum temperature on July 21 is statistically different from the temperature on December 20; however, it is a reasonable approximation that the temperature on December 20 of different years has identical statistics. Thus, we can view the random process composed of daily maximum temperatures as 365 interleaved stationary processes, each of which takes on a new value once per year.

<span class="mw-page-title-main">Optical transfer function</span> Function that specifies how different spatial frequencies are captured by an optical system

The optical transfer function (OTF) of an optical system such as a camera, microscope, human eye, or projector specifies how different spatial frequencies are captured or transmitted. It is used by optical engineers to describe how the optics project light from the object or scene onto a photographic film, detector array, retina, screen, or simply the next item in the optical transmission chain. A variant, the modulation transfer function (MTF), neglects phase effects, but is equivalent to the OTF in many situations.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

Optical heterodyne detection is a method of extracting information encoded as modulation of the phase, frequency or both of electromagnetic radiation in the wavelength band of visible or infrared light. The light signal is compared with standard or reference light from a "local oscillator" (LO) that would have a fixed offset in frequency and phase from the signal if the latter carried null information. "Heterodyne" signifies more than one frequency, in contrast to the single frequency employed in homodyne detection.

References

  1. "Definition of FREQUENCY" . Retrieved 3 October 2016.
  2. "Definition of PERIOD" . Retrieved 3 October 2016.
  3. Serway & Faughn 1989, p. 346.
  4. 1 2 Serway & Faughn 1989, p. 354.
  5. "Resolution 12 of the 11th CGPM (1960)". BIPM (International Bureau of Weights and Measures). Archived from the original on 8 April 2020. Retrieved 21 January 2021.
  6. "Special Publication 811: NIST Guide to the SI, Chapter 8". NIST. 28 January 2016. Retrieved 2022-11-08.
  7. Davies 1997, p. 275.
  8. Young 1999, p. 7.
  9. Boreman, Glenn D. "Spatial Frequency". SPIE . Retrieved 22 January 2021.
  10. "Definition of SOUND" . Retrieved 3 October 2016.
  11. Pilhofer, Michael (2007). Music Theory for Dummies. For Dummies. p. 97. ISBN   978-0-470-16794-6.
  12. Condon, Tim (2003). Elert, Glenn (ed.). "Frequency range of dog hearing". The Physics Factbook. Retrieved 2008-10-22.
  13. Lombardi, Michael A. (2007). "Fundamentals of Time and Frequency". In Bishop, Robert H. (ed.). Mechatronic Systems, Sensors, and Actuators: Fundamentals and Modeling. Austin: CRC Press. ISBN   9781420009002.
  14. Newell, David B; Tiesinga, Eite (2019). The international system of units (SI) (PDF) (Report). Gaithersburg, MD: National Institute of Standards and Technology. doi:10.6028/nist.sp.330-2019. sub§2.3.4, Table 4.

Sources

Further reading