The Bark scale is a psychoacoustical scale proposed by Eberhard Zwicker in 1961. It is named after Heinrich Barkhausen, who proposed the first subjective measurements of loudness. [1] One definition of the term is "a frequency scale on which equal distances correspond with perceptually equal distances. Above about 500 Hz this scale is more or less equal to a logarithmic frequency axis. Below 500 Hz the Bark scale becomes more and more linear." [2]
The scale ranges from 1 to 24 and corresponds to the first 24 critical bands of hearing. [3]
It is related to, but somewhat less popular than[ citation needed ], the mel scale, a perceptual scale of pitches judged by listeners to be equal in distance from one another.
Number | Center frequency (Hz) | Cut-off frequency (Hz) | Bandwidth (Hz) |
---|---|---|---|
20 | |||
1 | 60 | 100 | 80 |
2 | 150 | 200 | 100 |
3 | 250 | 300 | 100 |
4 | 350 | 400 | 100 |
5 | 450 | 510 | 110 |
6 | 570 | 630 | 120 |
7 | 700 | 770 | 140 |
8 | 840 | 920 | 150 |
9 | 1000 | 1080 | 160 |
10 | 1170 | 1270 | 190 |
11 | 1370 | 1480 | 210 |
12 | 1600 | 1720 | 240 |
13 | 1850 | 2000 | 280 |
14 | 2150 | 2320 | 320 |
15 | 2500 | 2700 | 380 |
16 | 2900 | 3150 | 450 |
17 | 3400 | 3700 | 550 |
18 | 4000 | 4400 | 700 |
19 | 4800 | 5300 | 900 |
20 | 5800 | 6400 | 1100 |
21 | 7000 | 7700 | 1300 |
22 | 8500 | 9500 | 1800 |
23 | 10500 | 12000 | 2500 |
24 | 13500 | 15500 | 3500 |
Since the direct measurements of the critical bands are subject to error, the values in this table have been generously rounded. [1]
In his letter "Subdivision of the Audible Frequency Range into Critical Bands", Zwicker states:
"These bands have been directly measured in experiments on the threshold for complex sounds, on masking, on the perception of phase, and most often on the loudness of complex sounds. In all these phenomena, the critical band seems to play an important role. It must be pointed out that the measurements taken so far indicate that the critical bands have a certain width, but that their position on the frequency scale is not fixed; rather, the position can be changed continuously, perhaps by the ear itself."
Thus the important attribute of the Bark scale is the width of the critical band at any given frequency, not the exact values of the edges or centers of any band.
To convert a frequency f (Hz) into Bark use:
or (Traunmüller, 1990) [4]
or (Wang, Sekey & Gersho, 1992) [5]
Frequency, most often measured in hertz, is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as temporal frequency for clarity and to distinguish it from spatial frequency. Ordinary frequency is related to angular frequency by a factor of 2π. The period is the interval of time between events, so the period is the reciprocal of the frequency: T = 1/f.
The total harmonic distortion is a measurement of the harmonic distortion present in a signal and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency. Distortion factor, a closely related term, is sometimes used as a synonym.
The mel scale is a perceptual scale of pitches judged by listeners to be equal in distance from one another. The reference point between this scale and normal frequency measurement is defined by assigning a perceptual pitch of 1000 mels to a 1000 Hz tone, 40 dB above the listener's threshold. Above about 500 Hz, increasingly large intervals are judged by listeners to produce equal pitch increments.
In music, timbre, also known as tone color or tone quality, is the perceived sound quality of a musical note, sound or tone. Timbre distinguishes different types of sound production, such as choir voices and musical instruments. It also enables listeners to distinguish different instruments in the same category.
Pitch is a perceptual property that allows sounds to be ordered on a frequency-related scale, or more commonly, pitch is the quality that makes it possible to judge sounds as "higher" and "lower" in the sense associated with musical melodies. Pitch is a major auditory attribute of musical tones, along with duration, loudness, and timbre.
The equivalent rectangular bandwidth or ERB is a measure used in psychoacoustics, which gives an approximation to the bandwidths of the filters in human hearing, using the unrealistic but convenient simplification of modeling the filters as rectangular band-pass filters, or band-stop filters, like in tailor-made notched music training (TMNMT).
The sone is a unit of loudness, the subjective perception of sound pressure. The study of perceived loudness is included in the topic of psychoacoustics and employs methods of psychophysics. Doubling the perceived loudness doubles the sone value. Proposed by Stanley Smith Stevens in 1936, it is not an SI unit.
The cent is a logarithmic unit of measure used for musical intervals. Twelve-tone equal temperament divides the octave into 12 semitones of 100 cents each. Typically, cents are used to express small intervals, to check intonation, or to compare the sizes of comparable intervals in different tuning systems. For humans, a single cent is too small to be perceived between successive notes.
In acoustics, loudness is the subjective perception of sound pressure. More formally, it is defined as the "attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud". The relation of physical attributes of sound to perceived loudness consists of physical, physiological and psychological components. The study of apparent loudness is included in the topic of psychoacoustics and employs methods of psychophysics.
In the branch of experimental psychology focused on sense, sensation, and perception, which is called psychophysics, a just-noticeable difference or JND is the amount something must be changed in order for a difference to be noticeable, detectable at least half the time. This limen is also known as the difference limen, difference threshold, or least perceptible difference.
Sound localization is a listener's ability to identify the location or origin of a detected sound in direction and distance.
An equal-loudness contour is a measure of sound pressure level, over the frequency spectrum, for which a listener perceives a constant loudness when presented with pure steady tones. The unit of measurement for loudness levels is the phon and is arrived at by reference to equal-loudness contours. By definition, two sine waves of differing frequencies are said to have equal-loudness level measured in phons if they are perceived as equally loud by the average young person without significant hearing impairment.
In audio engineering, electronics, physics, and many other fields, the color of noise or noise spectrum refers to the power spectrum of a noise signal. Different colors of noise have significantly different properties. For example, as audio signals they will sound different to human ears, and as images they will have a visibly different texture. Therefore, each application typically requires noise of a specific color. This sense of 'color' for noise signals is similar to the concept of timbre in music.
In audiology and psychoacoustics the concept of critical bands, introduced by Harvey Fletcher in 1933 and refined in 1940, describes the frequency bandwidth of the "auditory filter" created by the cochlea, the sense organ of hearing within the inner ear. Roughly, the critical band is the band of audio frequencies within which a second tone will interfere with the perception of the first tone by auditory masking.
ITU-R 468 is a standard relating to noise measurement, widely used when measuring noise in audio systems. The standard, now referred to as ITU-R BS.468-4, defines a weighting filter curve, together with a quasi-peak rectifier having special characteristics as defined by specified tone-burst tests. It is currently maintained by the International Telecommunication Union who took it over from the CCIR.
The Greenwood function correlates the position of the hair cells in the inner ear to the frequencies that stimulate their corresponding auditory neurons. Empirically derived in 1961 by Donald D. Greenwood, the relationship has shown to be constant throughout mammalian species when scaled to the appropriate cochlear spiral lengths and audible frequency ranges. Moreover, the Greenwood function provides the mathematical basis for cochlear implant surgical electrode array placement within the cochlea.
A-weighting is a form of frequency weighting and the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. A-weighting is applied to instrument-measured sound levels in an effort to account for the relative loudness perceived by the human ear, as the ear is less sensitive to low audio frequencies. It is employed by arithmetically adding a table of values, listed by octave or third-octave bands, to the measured sound pressure levels in dB. The resulting octave band measurements are usually added to provide a single A-weighted value describing the sound; the units are written as dB(A). Other weighting sets of values – B, C, D and now Z – are discussed below.
In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the reception of such waves and their perception by the brain. Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges.
Psychoacoustics is the branch of psychophysics involving the scientific study of the perception of sound by the human auditory system. It is the branch of science studying the psychological responses associated with sound including noise, speech, and music. Psychoacoustics is an interdisciplinary field including psychology, acoustics, electronic engineering, physics, biology, physiology, and computer science.
Perceptual Objective Listening Quality Analysis (POLQA) was the working title of an ITU-T standard that covers a model to predict speech quality by means of analyzing digital speech signals. The model was standardized as Recommendation ITU-T P.863 in 2011. The second edition of the standard appeared in 2014, and the third, currently in-force edition was adopted in 2018 under the title Perceptual objective listening quality prediction.