Harmonic series (music)

Last updated
Harmonics of a vibrating string, showing how the frequency of each harmonic is related to integer multiples of the fundamental frequency f. The location of the nodes (red dots) can be used to define equivalent strings (on the right) with 1/2, 1/3, and 1/4 of the length of the original strings, having the same frequency. Harmonic series on a string.gif
Harmonics of a vibrating string, showing how the frequency of each harmonic is related to integer multiples of the fundamental frequency f. The location of the nodes (red dots) can be used to define equivalent strings (on the right) with 1/2, 1/3, and 1/4 of the length of the original strings, having the same frequency.

A harmonic series (also overtone series) is the sequence of frequencies, musical tones, or pure tones in which each frequency is an integer multiple of a fundamental.

Contents

Pitched musical instruments are often based on an acoustic resonator such as a string or a column of air, which oscillates at numerous modes simultaneously. At the frequencies of each vibrating mode, waves travel in both directions along the string or air column, reinforcing and canceling each other to form standing waves. Interaction with the surrounding air causes audible sound waves, which travel away from the instrument. Because of the typical spacing of the resonances, these frequencies are mostly limited to integer multiples, or harmonics, of the lowest frequency, and such multiples form the harmonic series.

The musical pitch of a note is usually perceived as the lowest partial present (the fundamental frequency), which may be the one created by vibration over the full length of the string or air column, or a higher harmonic chosen by the player. The musical timbre of a steady tone from such an instrument is strongly affected by the relative strength of each harmonic.

Terminology

Partial, harmonic, fundamental, inharmonicity, and overtone

A "complex tone" (the sound of a note with a timbre particular to the instrument playing the note) "can be described as a combination of many simple periodic waves (i.e., sine waves) or partials, each with its own frequency of vibration, amplitude, and phase." [1] (See also, Fourier analysis.)

A partial is any of the sine waves (or "simple tones", as Ellis calls them [2] when translating Helmholtz) of which a complex tone is composed, not necessarily with an integer multiple of the lowest harmonic.

A harmonic is any member of the harmonic series, an ideal set of frequencies that are positive integer multiples of a common fundamental frequency. The fundamental is obviously a harmonic because it is 1 times itself. A harmonic partial is any real partial component of a complex tone that matches (or nearly matches) an ideal harmonic. [3]

An inharmonic partial is any partial that does not match an ideal harmonic. Inharmonicity is a measure of the deviation of a partial from the closest ideal harmonic, typically measured in cents for each partial. [4]

Many pitched acoustic instruments are designed to have partials that are close to being whole-number ratios with very low inharmonicity; therefore, in music theory, and in instrument design, it is convenient, although not strictly accurate, to speak of the partials in those instruments' sounds as "harmonics", even though they may have some degree of inharmonicity. The piano, one of the most important instruments of western tradition, contains a certain degree of inharmonicity among the frequencies generated by each string. Other pitched instruments, especially certain percussion instruments, such as marimba, vibraphone, tubular bells, timpani, and singing bowls contain mostly inharmonic partials, yet may give the ear a good sense of pitch because of a few strong partials that resemble harmonics. Unpitched, or indefinite-pitched instruments, such as cymbals and tam-tams make sounds (produce spectra) that are rich in inharmonic partials and may give no impression of implying any particular pitch.

An overtone is any partial above the lowest partial. The term overtone does not imply harmonicity or inharmonicity and has no other special meaning other than to exclude the fundamental. It is mostly the relative strength of the different overtones that give an instrument its particular timbre, tone color, or character. When writing or speaking of overtones and partials numerically, care must be taken to designate each correctly to avoid any confusion of one for the other, so the second overtone may not be the third partial, because it is the second sound in a series. [5]

Some electronic instruments, such as synthesizers, can play a pure frequency with no overtones (a sine wave). Synthesizers can also combine pure frequencies into more complex tones, such as to simulate other instruments. Certain flutes and ocarinas are very nearly without overtones.

Frequencies, wavelengths, and musical intervals in example systems

Even-numbered string harmonics from 2nd up to the 64th (5 octaves). Harmonic series to 32.png
Even-numbered string harmonics from 2nd up to the 64th (5 octaves).

One of the simplest cases to visualise is a vibrating string, as in the illustration; the string has fixed points at each end, and each harmonic mode divides it into 1, 2, 3, 4, etc., equal-sized sections resonating at increasingly higher frequencies. [6] Similar arguments apply to vibrating air columns in wind instruments (for example, "the French horn was originally a valveless instrument that could play only the notes of the harmonic series" [7] ), although these are complicated by having the possibility of anti-nodes (that is, the air column is closed at one end and open at the other), conical as opposed to cylindrical bores, or end-openings that run the gamut from no flare, cone flare, or exponentially shaped flares (such as in various bells).

In most pitched musical instruments, the fundamental (first harmonic) is accompanied by other, higher-frequency harmonics. Thus shorter-wavelength, higher-frequency waves occur with varying prominence and give each instrument its characteristic tone quality. The fact that a string is fixed at each end means that the longest allowed wavelength on the string (which gives the fundamental frequency) is twice the length of the string (one round trip, with a half cycle fitting between the nodes at the two ends). Other allowed wavelengths are 12, 13, 14, 15, 16, etc. times that of the fundamental.

Theoretically, these shorter wavelengths correspond to vibrations at frequencies that are 2, 3, 4, 5, 6, etc., times the fundamental frequency. Physical characteristics of the vibrating medium and/or the resonator it vibrates against often alter these frequencies. (See inharmonicity and stretched tuning for alterations specific to wire-stringed instruments and certain electric pianos.) However, those alterations are small, and except for precise, highly specialized tuning, it is reasonable to think of the frequencies of the harmonic series as integer multiples of the fundamental frequency.

The harmonic series is an arithmetic progression (1×f, 2×f, 3×f, 4×f, 5×f, ...). In terms of frequency (measured in cycles per second, or hertz (Hz) where f is the fundamental frequency), the difference between consecutive harmonics is therefore constant and equal to the fundamental. But because human ears respond to sound nonlinearly, higher harmonics are perceived as "closer together" than lower ones. On the other hand, the octave series is a geometric progression (2×f, 4×f, 8×f, 16×f, ...), and people perceive these distances as "the same" in the sense of musical interval. In terms of what one hears, each octave in the harmonic series is divided into increasingly "smaller" and more numerous intervals.

The second harmonic, whose frequency is twice the fundamental, sounds an octave higher; the third harmonic, three times the frequency of the fundamental, sounds a perfect fifth above the second harmonic. The fourth harmonic vibrates at four times the frequency of the fundamental and sounds a perfect fourth above the third harmonic (two octaves above the fundamental). Double the harmonic number means double the frequency (which sounds an octave higher).

An illustration in musical notation of the harmonic series (on C) up to the 20th harmonic. The numbers above the harmonic indicate the difference - in cents - from equal temperament (rounded to the nearest integer). Blue notes are very flat and red notes are very sharp. Listeners accustomed to more tonal tuning, such as meantone and well temperaments, notice many other notes are "off". Harmonic Series.png
An illustration in musical notation of the harmonic series (on C) up to the 20th harmonic. The numbers above the harmonic indicate the difference in cents from equal temperament (rounded to the nearest integer). Blue notes are very flat and red notes are very sharp. Listeners accustomed to more tonal tuning, such as meantone and well temperaments, notice many other notes are "off".
Harmonics on C, from 1st (fundamental) to 32nd harmonic (5 octaves higher). Notation used is based on the extended just notation by Ben Johnston Play (help*info) Harmonics to 32.png
Harmonics on C, from 1st (fundamental) to 32nd harmonic (5 octaves higher). Notation used is based on the extended just notation by Ben Johnston Loudspeaker.svg Play  
Harmonic series as musical notation with intervals between harmonics labeled. Blue notes differ most significantly from equal temperament. One can listen to A2 (110 Hz) and 15 of its partials Harmonic series intervals.png
Harmonic series as musical notation with intervals between harmonics labeled. Blue notes differ most significantly from equal temperament. One can listen to A2 (110 Hz) and 15 of its partials
Staff notation of partials 1, 3, 5, 7, 11, 13, 17, and 19 on C. These are "prime harmonics". Play (help*info) Notation of partials 1-19 for 1-1.png
Staff notation of partials 1, 3, 5, 7, 11, 13, 17, and 19 on C. These are "prime harmonics". Loudspeaker.svg Play  

As Mersenne writes, "the order of the Consonances is natural, and ... the way we count them, starting from unity up to the number six and beyond is founded in nature." [9] However, to quote Carl Dahlhaus, "the interval-distance of the natural-tone-row [overtones] [...], counting up to 20, includes everything from the octave to the quarter tone, (and) useful and useless musical tones. The natural-tone-row [harmonic series] justifies everything, that means, nothing." [10]

Harmonics and tuning

If the harmonics are octave displaced and compressed into the span of one octave, some of them are approximated by the notes of what the West has adopted as the chromatic scale based on the fundamental tone. The Western chromatic scale has been modified into twelve equal semitones, which is slightly out of tune with many of the harmonics, especially the 7th, 11th, and 13th harmonics. In the late 1930s, composer Paul Hindemith ranked musical intervals according to their relative dissonance based on these and similar harmonic relationships. [11]

Below is a comparison between the first 31 harmonics and the intervals of 12-tone equal temperament (12TET), octave displaced and compressed into the span of one octave. Tinted fields highlight differences greater than 5 cents (120 of a semitone), which is the human ear's "just noticeable difference" for notes played one after the other (smaller differences are noticeable with notes played simultaneously).

Harmonic12TET IntervalNoteVariance cents
124816prime (octave)C0
17minor secondC, D+5
918major secondD+4
19minor thirdD, E2
51020major thirdE14
21fourthF29
1122tritoneF, G49
23+28
361224fifthG+2
25minor sixthG, A27
1326+41
27major sixthA+6
71428minor seventhA, B31
29+30
1530major seventhB12
31+45

The frequencies of the harmonic series, being integer multiples of the fundamental frequency, are naturally related to each other by whole-numbered ratios and small whole-numbered ratios are likely the basis of the consonance of musical intervals (see just intonation). This objective structure is augmented by psychoacoustic phenomena. For example, a perfect fifth, say 200 and 300 Hz (cycles per second), causes a listener to perceive a combination tone of 100 Hz (the difference between 300 Hz and 200 Hz); that is, an octave below the lower (actual sounding) note. This 100 Hz first-order combination tone then interacts with both notes of the interval to produce second-order combination tones of 200 (300  100) and 100 (200  100) Hz and all further nth-order combination tones are all the same, being formed from various subtraction of 100, 200, and 300. When one contrasts this with a dissonant interval such as a tritone (not tempered) with a frequency ratio of 7:5 one gets, for example, 700  500 = 200 (1st order combination tone) and 500  200 = 300 (2nd order). The rest of the combination tones are octaves of 100 Hz so the 7:5 interval actually contains four notes: 100 Hz (and its octaves), 300 Hz, 500 Hz and 700 Hz. Note that the lowest combination tone (100 Hz) is a seventeenth (two octaves and a major third) below the lower (actual sounding) note of the tritone. All the intervals succumb to similar analysis as has been demonstrated by Paul Hindemith in his book The Craft of Musical Composition, although he rejected the use of harmonics from the seventh and beyond. [11]

The Mixolydian mode is consonant with the first 10 harmonics of the harmonic series (the 11th harmonic, a tritone, is not in the Mixolydian mode). The Ionian mode is consonant with only the first 6 harmonics of the series (the seventh harmonic, a minor seventh, is not in the Ionian mode).

Timbre of musical instruments

The relative amplitudes (strengths) of the various harmonics primarily determine the timbre of different instruments and sounds, though onset transients, formants, noises, and inharmonicities also play a role. For example, the clarinet and saxophone have similar mouthpieces and reeds, and both produce sound through resonance of air inside a chamber whose mouthpiece end is considered closed. Because the clarinet's resonator is cylindrical, the even-numbered harmonics are less present. The saxophone's resonator is conical, which allows the even-numbered harmonics to sound more strongly and thus produces a more complex tone. The inharmonic ringing of the instrument's metal resonator is even more prominent in the sounds of brass instruments.

Human ears tend to group phase-coherent, harmonically-related frequency components into a single sensation. Rather than perceiving the individual partials–harmonic and inharmonic, of a musical tone, humans perceive them together as a tone color or timbre, and the overall pitch is heard as the fundamental of the harmonic series being experienced. If a sound is heard that is made up of even just a few simultaneous sine tones, and if the intervals among those tones form part of a harmonic series, the brain tends to group this input into a sensation of the pitch of the fundamental of that series, even if the fundamental is not present.

Variations in the frequency of harmonics can also affect the perceived fundamental pitch. These variations, most clearly documented in the piano and other stringed instruments but also apparent in brass instruments, are caused by a combination of metal stiffness and the interaction of the vibrating air or string with the resonating body of the instrument.

Interval strength

David Cope (1997) suggests the concept of interval strength, [12] in which an interval's strength, consonance, or stability (see consonance and dissonance) is determined by its approximation to a lower and stronger, or higher and weaker, position in the harmonic series. See also: Lipps–Meyer law.

Thus, an equal-tempered perfect fifth ( Loudspeaker.svg play  ) is stronger than an equal-tempered minor third ( Loudspeaker.svg play  ), since they approximate a just perfect fifth ( Loudspeaker.svg play  ) and just minor third ( Loudspeaker.svg play  ), respectively. The just minor third appears between harmonics 5 and 6 while the just fifth appears lower, between harmonics 2 and 3.

See also

Notes

  1. William Forde Thompson (2008). Music, Thought, and Feeling: Understanding the Psychology of Music. p. 46. ISBN   978-0-19-537707-1.
  2. Hermann von Helmholtz and Alexander John Ellis (1885). On the sensations of tone as a physiological basis for the theory of music (second ed.). Longmans, Green. p. 23.
  3. John R. Pierce (2001). "Consonance and Scales". In Perry R. Cook (ed.). Music, Cognition, and Computerized Sound. MIT Press. ISBN   978-0-262-53190-0.
  4. Martha Goodway and Jay Scott Odell (1987). The Historical Harpsichord Volume Two: The Metallurgy of 17th- and 18th- Century Music Wire. Pendragon Press. ISBN   978-0-918728-54-8.
  5. Riemann 1896 , p. 143: "let it be understood, the second overtone is not the third tone of the series, but the second"
  6. Roederer, Juan G. (1995). The Physics and Psychophysics of Music. p. 106. ISBN   0-387-94366-8.
  7. Kostka, Stefan & Payne, Dorothy (1995). Tonal Harmony (3rd ed.). McGraw-Hill. p. 102. ISBN   0-07-035874-5.
  8. Fonville, John (Summer 1991). "Ben Johnston's Extended Just Intonation: A guide for interpreters". Perspectives of New Music. 29 (2): 106–137. doi:10.2307/833435. JSTOR   833435.
  9. Cohen, H.F. (2013). Quantifying Music: The science of music at the first stage of scientific revolution 1580–1650. Springer. p. 103. ISBN   9789401576864.
  10. Sabbagh, Peter (2003). The Development of Harmony in Scriabin's Works, p.12. Universal. ISBN   9781581125955. Cites: Dahlhaus, Carl (1972). "Struktur und Expression bei Alexander Skrjabin", Mu sik des Ostens, Vol.6, p.229.
  11. 1 2 Hindemith, Paul (1942). The Craft of Musical Composition: Book 1—Theoretical Part, p.15ff. Translated by Arthur Mendel (London: Schott & Co; New York: Associated Music Publishers. ISBN   0901938300). Archived 2014-07-01 at the Wayback Machine .
  12. Cope, David (1997). Techniques of the Contemporary Composer, p. 40–41. New York, New York: Schirmer Books. ISBN   0-02-864737-8.

Related Research Articles

Fundamental frequency Lowest frequency of a periodic waveform, such as sound

The fundamental frequency, often referred to simply as the fundamental, is defined as the lowest frequency of a periodic waveform. In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial present. In terms of a superposition of sinusoids, the fundamental frequency is the lowest frequency sinusoidal in the sum of harmonically related frequencies, or the frequency of the difference between adjacent frequencies. In some contexts, the fundamental is usually abbreviated as f0, indicating the lowest frequency counting from zero. In other contexts, it is more common to abbreviate it as f1, the first harmonic.

Musical tuning Terms for tuning an instrument and a systems of pitches

In music, there are two common meanings for tuning:

Harmonic

A harmonic is any member of the harmonic series. The term is employed in various disciplines, including music, physics, acoustics, electronic power transmission, radio technology, and other fields. It is typically applied to repeating signals, such as sinusoidal waves. A harmonic is a wave with a frequency that is a positive integer multiple of the frequency of the original wave, known as the fundamental frequency. The original wave is also called the 1st harmonic, the following harmonics are known as higher harmonics. As all harmonics are periodic at the fundamental frequency, the sum of harmonics is also periodic at that frequency. For example, if the fundamental frequency is 50 Hz, a common AC power supply frequency, the frequencies of the first three higher harmonics are 100 Hz, 150 Hz, 200 Hz and any addition of waves with these frequencies is periodic at 50 Hz.

An nth characteristic mode, for n > 1, will have nodes that are not vibrating. For example, the 3rd characteristic mode will have nodes at L and L, where L is the length of the string. In fact, each nth characteristic mode, for n not a multiple of 3, will not have nodes at these points. These other characteristic modes will be vibrating at the positions L and L. If the player gently touches one of these positions, then these other characteristic modes will be suppressed. The tonal harmonics from these other characteristic modes will then also be suppressed. Consequently, the tonal harmonics from the nth characteristic modes, where n is a multiple of 3, will be made relatively more prominent.

Overtone

An overtone is any frequency greater than the fundamental frequency of a sound. In other words, overtones are higher pitches resulting from the lowest note or fundamental. While the fundamental is usually heard most prominently, overtones are actually present in any pitch except a true sine wave. The relative volume or amplitude of various overtone partials is one of the key identifying features of timbre, or the individual characteristic of a sound.

Timbre Quality of a musical note or sound or tone

In music, timbre, also known as tone color or tone quality, is the perceived sound quality of a musical note, sound or tone. Timbre distinguishes different types of sound production, such as choir voices and musical instruments. It also enables listeners to distinguish different instruments in the same category.

Pitch (music) Perceptual property in music ordering sounds from low to high

Pitch is a perceptual property of sounds that allows their ordering on a frequency-related scale, or more commonly, pitch is the quality that makes it possible to judge sounds as "higher" and "lower" in the sense associated with musical melodies. Pitch can be determined only in sounds that have a frequency that is clear and stable enough to distinguish from noise. Pitch is a major auditory attribute of musical tones, along with duration, loudness, and timbre.

Inharmonicity

In music, inharmonicity is the degree to which the frequencies of overtones depart from whole multiples of the fundamental frequency.

Piano acoustics are the physical properties of the piano that affect its sound. It is an area of study within musical acoustics.

Sympathetic string

Sympathetic strings or resonance strings are auxiliary strings found on many Indian musical instruments, as well as some Western Baroque instruments and a variety of folk instruments. They are typically not played directly by the performer, only indirectly through the tones that are played on the main strings, based on the principle of sympathetic resonance. The resonance is most often heard when the fundamental frequency of the string is in unison or an octave lower or higher than the catalyst note, although it can occur for other intervals, such as a fifth, with less effect.

Piano tuning

Piano tuning is the act of adjusting the tension of the strings of an acoustic piano so that the musical intervals between strings are in tune. The meaning of the term 'in tune', in the context of piano tuning, is not simply a particular fixed set of pitches. Fine piano tuning requires an assessment of the vibration interaction among notes, which is different for every piano, thus in practice requiring slightly different pitches from any theoretical standard. Pianos are usually tuned to a modified version of the system called equal temperament.

Musical acoustics or music acoustics is a multidisciplinary field that combines knowledge from physics, psychophysics, organology(classification of the instruments), physiology, music theory, ethnomusicology, signal processing and instrument building, among other disciplines. As a branch of acoustics, it is concerned with researching and describing the physics of music – how sounds are employed to make music. Examples of areas of study are the function of musical instruments, the human voice, computer analysis of melody, and in the clinical use of music in music therapy.

Consonance and dissonance Categorizations of simultaneous or successive sounds

In music, consonance and dissonance are categorizations of simultaneous or successive sounds. Within the Western tradition, some listeners associate consonance with sweetness, pleasantness, and acceptability, and dissonance with harshness, unpleasantness, or unacceptability, although there is broad acknowledgement that this depends also on familiarity and musical expertise. The terms form a structural dichotomy in which they define each other by mutual exclusion: a consonance is what is not dissonant, and a dissonance is what is not consonant. However, a finer consideration shows that the distinction forms a gradation, from the most consonant to the most dissonant. In casual discourse, as Hindemith stressed, "The two concepts have never been completely explained, and for a thousand years the definitions have varied". The term sonance has been proposed to encompass or refer indistinctly to the terms consonance and dissonance.

Beat (acoustics) Term in acoustics

In acoustics, a beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies.

Stretched tuning is a detail of musical tuning, applied to wire-stringed musical instruments, older, non-digital electric pianos, and some sample-based synthesizers based on these instruments, to accommodate the natural inharmonicity of their vibrating elements. In stretched tuning, two notes an octave apart, whose fundamental frequencies theoretically have an exact 2:1 ratio, are tuned slightly farther apart. "For a stretched tuning the octave is greater than a factor of 2; for a compressed tuning the octave is smaller than a factor of 2."

Acoustic resonance resonance phenomena in sound and musical devices

Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration.

Musical temperament Musical tuning system

In musical tuning, a temperament is a tuning system that slightly compromises the pure intervals of just intonation to meet other requirements. Most modern Western musical instruments are tuned in the equal temperament system. Tempering is the process of altering the size of an interval by making it narrower or wider than pure. "Any plan that describes the adjustments to the sizes of some or all of the twelve fifth intervals in the circle of fifths so that they accommodate pure octaves and produce certain sizes of major thirds is called a temperament." Temperament is especially important for keyboard instruments, which typically allow a player to play only the pitches assigned to the various keys, and lack any way to alter pitch of a note in performance. Historically, the use of just intonation, Pythagorean tuning and meantone temperament meant that such instruments could sound "in tune" in one key, or some keys, but would then have more dissonance in other keys.

A[n anomalous chord is,] A chord containing an interval which has been made very sharp or flat in tempering the scale for instruments of fixed pitches.

In music, the undertone series or subharmonic series is a sequence of notes that results from inverting the intervals of the overtone series. While overtones naturally occur with the physical production of music on instruments, undertones must be produced in unusual ways. While the overtone series is based upon arithmetic multiplication of frequencies, resulting in a harmonic series, the undertone series is based on arithmetic division.

String harmonic

Playing a string harmonic is a string instrument technique that uses the nodes of natural harmonics of a musical string to isolate overtones. Playing string harmonics produces high pitched tones, often compared in timbre to a whistle or flute. Overtones can be isolated "by lightly touching the string with the finger instead of pressing it down" against the fingerboard.

Dynamic Tonality is a new paradigm for music which generalizes the special relationship between Just Intonation and the Harmonic Series to apply to a much wider set of pseudo-Just tunings and pseudo-Harmonic timbres. Dynamic Tonality enables many new musical effects that could expand the frontiers of tonality, including polyphonic tuning bends, tuning modulations, new chord progressions, temperament modulations and progressions, and novel timbre effects such as dynamic changes to primeness, conicality, and richness.

The strike tone, strike note, or tap note, of a percussion instrument when struck, is the dominant note perceived immediately by the human ear. It is also known as the prime or fundamental note. However, an analysis of the bell's frequency spectrum reveals that the fundamental only exists weakly and its dominance is a human perception of a note built up by the complex series of harmonics that are generated. The correct and accurate harmonic tuning is therefore important in creating a good strike tone.

References