Longitudinal wave

Last updated
A type of longitudinal wave: A plane pressure pulse wave. Onde compression impulsion 1d 30 petit.gif
A type of longitudinal wave: A plane pressure pulse wave.
Nonfree image: detailed animation of a longitudinal wave
Searchtool.svg Detailed animation of longitudinal wave motion (CC-BY-NC-ND 4.0)

Longitudinal waves are waves which oscillate in the direction which is parallel to the direction in which the wave travels and displacement of the medium is in the same (or opposite) direction of the wave propagation. Mechanical longitudinal waves are also called compressional or compression waves, because they produce compression and rarefaction when travelling through a medium, and pressure waves, because they produce increases and decreases in pressure. A wave along the length of a stretched Slinky toy, where the distance between coils increases and decreases, is a good visualization. Real-world examples include sound waves (vibrations in pressure, a particle of displacement, and particle velocity propagated in an elastic medium) and seismic P waves (created by earthquakes and explosions).

Contents

The other main type of wave is the transverse wave, in which the displacements of the medium are at right angles to the direction of propagation. Transverse waves, for instance, describe some bulk sound waves in solid materials (but not in fluids); these are also called "shear waves" to differentiate them from the (longitudinal) pressure waves that these materials also support.

Nomenclature

"Longitudinal waves" and "transverse waves" have been abbreviated by some authors as "L-waves" and "T-waves", respectively, for their own convenience. [1] While these two abbreviations have specific meanings in seismology (L-wave for Love wave [2] or long wave [3] ) and electrocardiography (see T wave), some authors chose to use "ℓ-waves" (lowercase 'L') and "t-waves" instead, although they are not commonly found in physics writings except for some popular science books. [4]

Sound waves

For longitudinal harmonic sound waves, the frequency and wavelength can be described by the formula

where:

is the displacement of the point on the traveling sound wave;
Representation of the propagation of an omnidirectional pulse wave on a 2-D grid (empirical shape) Ondes compression 2d 20 petit.gif
Representation of the propagation of an omnidirectional pulse wave on a 2‑D grid (empirical shape)
is the distance from the point to the wave's source;
is the time elapsed;
is the amplitude of the oscillations,
is the speed of the wave; and
is the angular frequency of the wave.

The quantity is the time that the wave takes to travel the distance

The ordinary frequency () of the wave is given by

The wavelength can be calculated as the relation between a wave's speed and ordinary frequency.

For sound waves, the amplitude of the wave is the difference between the pressure of the undisturbed air and the maximum pressure caused by the wave.

Sound's propagation speed depends on the type, temperature, and composition of the medium through which it propagates.

Speed of longitudinal waves

Isotropic medium

For isotropic solids and liquids, the speed of a longitudinal wave can be described by

where

is the elastic modulus, such that
where is the shear modulus and is the bulk modulus;
is the mass density of the medium.

Attenuation of longitudinal waves

The attenuation of a wave in a medium describes the loss of energy a wave carries as it propagates throughout the medium. [5] This is caused by the scattering of the wave at interfaces, the loss of energy due to the friction between molecules, or geometric divergence. [5] The study of attenuation of elastic waves in materials has increased in recent years, particularly within the study of polycrystalline materials where researchers aim to "nondestructively evaluate the degree of damage of engineering components" and to "develop improved procedures for characterizing microstructures" according to a research team led by R. Bruce Thompson in a Wave Motion publication. [6]

Attenuation in viscoelastic materials

In viscoelastic materials, the attenuation coefficients per length for longitudinal waves and for transverse waves must satisfy the following ratio:

where and are the transverse and longitudinal wave speeds respectively. [7]

Attenuation in polycrystalline materials

Polycrystalline materials are made up of various crystal grains which form the bulk material. Due to the difference in crystal structure and properties of these grains, when a wave propagating through a poly-crystal crosses a grain boundary, a scattering event occurs causing scattering based attenuation of the wave. [8] Additionally it has been shown that the ratio rule for viscoelastic materials,

applies equally successfully to polycrystalline materials. [8]

A current prediction for modeling attenuation of waves in polycrystalline materials with elongated grains is the second-order approximation (SOA) model which accounts the second order of inhomogeneity allowing for the consideration multiple scattering in the crystal system. [9] [10] This model predicts that the shape of the grains in a poly-crystal has little effect on attenuation. [9]

Pressure waves

The equations for sound in a fluid given above also apply to acoustic waves in an elastic solid. Although solids also support transverse waves (known as S-waves in seismology), longitudinal sound waves in the solid exist with a velocity and wave impedance dependent on the material's density and its rigidity, the latter of which is described (as with sound in a gas) by the material's bulk modulus. [11]

In May 2022, NASA reported the sonification (converting astronomical data associated with pressure waves into sound) of the black hole at the center of the Perseus galaxy cluster. [12] [13]

Electromagnetics

Maxwell's equations lead to the prediction of electromagnetic waves in a vacuum, which are strictly transverse waves; due to the fact that they would need particles to vibrate upon, the electric and magnetic fields of which the wave consists are perpendicular to the direction of the wave's propagation. [14] However plasma waves are longitudinal since these are not electromagnetic waves but density waves of charged particles, but which can couple to the electromagnetic field. [14] [15] [16]

After Heaviside's attempts to generalize Maxwell's equations, Heaviside concluded that electromagnetic waves were not to be found as longitudinal waves in " free space " or homogeneous media. [17] Maxwell's equations, as we now understand them, retain that conclusion: in free-space or other uniform isotropic dielectrics, electro-magnetic waves are strictly transverse. However electromagnetic waves can display a longitudinal component in the electric and/or magnetic fields when traversing birefringent materials, or inhomogeneous materials especially at interfaces (surface waves for instance) such as Zenneck waves. [18]

In the development of modern physics, Alexandru Proca (1897–1955) was known for developing relativistic quantum field equations bearing his name (Proca's equations) which apply to the massive vector spin-1 mesons. In recent decades some other theorists, such as Jean-Pierre Vigier and Bo Lehnert of the Swedish Royal Society, have used the Proca equation in an attempt to demonstrate photon mass [19] as a longitudinal electromagnetic component of Maxwell's equations, suggesting that longitudinal electromagnetic waves could exist in a Dirac polarized vacuum. However photon rest mass is strongly doubted by almost all physicists and is incompatible with the Standard Model of physics.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Wave</span> Repeated oscillation around equilibrium

In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a travelling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero.

In physics, attenuation is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at variable attenuation rates.

<span class="mw-page-title-main">Cutoff frequency</span> Frequency response boundary

In physics and electrical engineering, a cutoff frequency, corner frequency, or break frequency is a boundary in a system's frequency response at which energy flowing through the system begins to be reduced rather than passing through.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Transmission line</span> Cable or other structure for carrying radio waves

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances. However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

<span class="mw-page-title-main">Transverse wave</span> Moving wave that has oscillations perpendicular to the direction of the wave

In physics, a transverse wave is a wave that oscillates perpendicularly to the direction of the wave's advance. In contrast, a longitudinal wave travels in the direction of its oscillations. All waves move energy from place to place without transporting the matter in the transmission medium if there is one. Electromagnetic waves are transverse without requiring a medium. The designation “transverse” indicates the direction of the wave is perpendicular to the displacement of the particles of the medium through which it passes, or in the case of EM waves, the oscillation is perpendicular to the direction of the wave.

A phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle in physics, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves.

<span class="mw-page-title-main">Speed of sound</span> Speed of sound wave through elastic medium

The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s, or 1 km in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating.

<span class="mw-page-title-main">Scattering</span> Range of physical processes

In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called diffuse reflections and unscattered reflections are called specular (mirror-like) reflections. Originally, the term was confined to light scattering. As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" in 1800. John Tyndall, a pioneer in light scattering research, noted the connection between light scattering and acoustic scattering in the 1870s. Near the end of the 19th century, the scattering of cathode rays and X-rays was observed and discussed. With the discovery of subatomic particles and the development of quantum theory in the 20th century, the sense of the term became broader as it was recognized that the same mathematical frameworks used in light scattering could be applied to many other phenomena.

<span class="mw-page-title-main">Displacement current</span> Physical quantity in electromagnetism

In electromagnetism, displacement current density is the quantity D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.

<span class="mw-page-title-main">Poromechanics</span> Field of study combining physics, mechanics and acoustics

Poromechanics is a branch of physics and specifically continuum mechanics that studies the behavior of fluid-saturated porous media. A porous medium or a porous material is a solid, constituting the matrix, which is permeated by an interconnected network of pores or voids filled with a fluid. In general, the fluid may be composed of liquid or gas phases or both. In the simplest case, both the solid matrix and the pore space constitute two separate, continuously connected domains. An archtypal example of such a porous material is the kitchen sponge, which is formed of two interpenetrating continua. Some porous media has a more complex microstructure in which, for example, the porespace is disconnected. Porespace that is unable to exchange fluid with the exterior is termed occluded porespace. Alternatively, in the case of granular porous media, the solid phase may constitute disconnected domains, termed the "grains", which are load-bearing under compression, though can flow when sheared.

Acoustic waves are a type of energy propagation that travels through a medium, such as air, water, or solid objects, by means of adiabatic compression and expansion. Key quantities describing these waves include acoustic pressure, particle velocity, particle displacement, and acoustic intensity. The speed of acoustic waves depends on the medium's properties, such as density and elasticity, with sound traveling at approximately 343 meters per second in air, 1480 meters per second in water, and varying speeds in solids. Examples of acoustic waves include audible sound from speakers, seismic waves causing ground vibrations, and ultrasound used for medical imaging. Understanding acoustic waves is crucial in fields like acoustics, physics, engineering, and medicine, with applications in sound design, noise reduction, and diagnostic imaging.

The linear attenuation coefficient, attenuation coefficient, or narrow-beam attenuation coefficient characterizes how easily a volume of material can be penetrated by a beam of light, sound, particles, or other energy or matter. A coefficient value that is large represents a beam becoming 'attenuated' as it passes through a given medium, while a small value represents that the medium had little effect on loss. The (derived) SI unit of attenuation coefficient is the reciprocal metre (m−1). Extinction coefficient is another term for this quantity, often used in meteorology and climatology. Most commonly, the quantity measures the exponential decay of intensity, that is, the value of downward e-folding distance of the original intensity as the energy of the intensity passes through a unit thickness of material, so that an attenuation coefficient of 1 m−1 means that after passing through 1 metre, the radiation will be reduced by a factor of e, and for material with a coefficient of 2 m−1, it will be reduced twice by e, or e2. Other measures may use a different factor than e, such as the decadic attenuation coefficient below. The broad-beam attenuation coefficient counts forward-scattered radiation as transmitted rather than attenuated, and is more applicable to radiation shielding. The mass attenuation coefficient is the attenuation coefficient normalized by the density of the material.

<span class="mw-page-title-main">Lamb waves</span> Elastic waves propagating in solid plates or spheres

Lamb waves propagate in solid plates or spheres. They are elastic waves whose particle motion lies in the plane that contains the direction of wave propagation and the direction perpendicular to the plate. In 1917, the English mathematician Horace Lamb published his classic analysis and description of acoustic waves of this type. Their properties turned out to be quite complex. An infinite medium supports just two wave modes traveling at unique velocities; but plates support two infinite sets of Lamb wave modes, whose velocities depend on the relationship between wavelength and plate thickness.

<span class="mw-page-title-main">Sound</span> Vibration that travels via pressure waves in matter

In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the reception of such waves and their perception by the brain. Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges, allowing some to even hear ultrasounds.

<span class="mw-page-title-main">Acoustic metamaterial</span> Material designed to manipulate sound waves

An acoustic metamaterial, sonic crystal, or phononic crystal is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids. Sound wave control is accomplished through manipulating parameters such as the bulk modulus β, density ρ, and chirality. They can be engineered to either transmit, or trap and amplify sound waves at certain frequencies. In the latter case, the material is an acoustic resonator.

In acoustics, acoustic attenuation is a measure of the energy loss of sound propagation through an acoustic transmission medium. Most media have viscosity and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity. This effect can be quantified through the Stokes's law of sound attenuation. Sound attenuation may also be a result of heat conductivity in the media as has been shown by G. Kirchhoff in 1868. The Stokes-Kirchhoff attenuation formula takes into account both viscosity and thermal conductivity effects.

The acoustoelastic effect is how the sound velocities of an elastic material change if subjected to an initial static stress field. This is a non-linear effect of the constitutive relation between mechanical stress and finite strain in a material of continuous mass. In classical linear elasticity theory small deformations of most elastic materials can be described by a linear relation between the applied stress and the resulting strain. This relationship is commonly known as the generalised Hooke's law. The linear elastic theory involves second order elastic constants and yields constant longitudinal and shear sound velocities in an elastic material, not affected by an applied stress. The acoustoelastic effect on the other hand include higher order expansion of the constitutive relation between the applied stress and resulting strain, which yields longitudinal and shear sound velocities dependent of the stress state of the material. In the limit of an unstressed material the sound velocities of the linear elastic theory are reproduced.

Brillouin spectroscopy is an empirical spectroscopy technique which allows the determination of elastic moduli of materials. The technique uses inelastic scattering of light when it encounters acoustic phonons in a crystal, a process known as Brillouin scattering, to determine phonon energies and therefore interatomic potentials of a material. The scattering occurs when an electromagnetic wave interacts with a density wave, photon-phonon scattering.

A one-way wave equation is a first-order partial differential equation describing one wave traveling in a direction defined by the vector wave velocity. It contrasts with the second-order two-way wave equation describing a standing wavefield resulting from superposition of two waves in opposite directions. In the one-dimensional case it is also known as a transport equation, and it allows wave propagation to be calculated without the mathematical complication of solving a 2nd order differential equation. Due to the fact that in the last decades no general solution to the 3D one-way wave equation could be found, numerous approximation methods based on the 1D one-way wave equation are used for 3D seismic and other geophysical calculations, see also the section § Three-dimensional case.

References

  1. Winkler, Erhard (1997). Stone in Architecture: Properties, durability. Springer Science & Business Media. pp.  55, 57 via Google books.
  2. Allaby, M. (2008). A Dictionary of Earth Sciences (3rd ed.). Oxford University Press via oxfordreference.com.
  3. Stahl, Dean A.; Landen, Karen (2001). Abbreviations Dictionary (10th ed.). CRC Press. p. 618 via Google books.
  4. Milford, Francine (2016). The Tuning Fork. pp. 43–44.
  5. 1 2 "Attenuation". SEG Wiki.
  6. Thompson, R. Bruce; Margetan, F.J.; Haldipur, P.; Yu, L.; Li, A.; Panetta, P.; Wasan, H. (April 2008). "Scattering of elastic waves in simple and complex polycrystals". Wave Motion. 45 (5): 655–674. Bibcode:2008WaMot..45..655T. doi:10.1016/j.wavemoti.2007.09.008. ISSN   0165-2125.
  7. Norris, Andrew N. (2017). "An inequality for longitudinal and transverse wave attenuation coefficients". The Journal of the Acoustical Society of America. 141 (1): 475–479. arXiv: 1605.04326 . Bibcode:2017ASAJ..141..475N. doi:10.1121/1.4974152. ISSN   0001-4966. PMID   28147617 via pubs.aip.org/jasa.
  8. 1 2 Kube, Christopher M.; Norris, Andrew N. (2017-04-01). "Bounds on the longitudinal and shear wave attenuation ratio of polycrystalline materials". The Journal of the Acoustical Society of America. 141 (4): 2633–2636. Bibcode:2017ASAJ..141.2633K. doi:10.1121/1.4979980. ISSN   0001-4966. PMID   28464650.
  9. 1 2 Huang, M.; Sha, G.; Huthwaite, P.; Rokhlin, S. I.; Lowe, M. J. S. (2021-04-01). "Longitudinal wave attenuation in polycrystals with elongated grains: 3D numerical and analytical modeling". The Journal of the Acoustical Society of America. 149 (4): 2377–2394. Bibcode:2021ASAJ..149.2377H. doi: 10.1121/10.0003955 . ISSN   0001-4966. PMID   33940885.
  10. Huang, M.; Sha, G.; Huthwaite, P.; Rokhlin, S. I.; Lowe, M. J. S. (2020-12-01). "Elastic wave velocity dispersion in polycrystals with elongated grains: Theoretical and numerical analysis". The Journal of the Acoustical Society of America. 148 (6): 3645–3662. Bibcode:2020ASAJ..148.3645H. doi: 10.1121/10.0002916 . hdl: 10044/1/85906 . ISSN   0001-4966. PMID   33379920.
  11. Weisstein, Eric W., " P-Wave ". Eric Weisstein's World of Science.
  12. Watzke, Megan; Porter, Molly; Mohon, Lee (4 May 2022). "New NASA Black Hole Sonifications with a Remix". NASA . Retrieved 11 May 2022.
  13. Overbye, Dennis (7 May 2022). "Hear the Weird Sounds of a Black Hole Singing – As part of an effort to "sonify" the cosmos, researchers have converted the pressure waves from a black hole into an audible … something". The New York Times . Retrieved 11 May 2022.
  14. 1 2 David J. Griffiths, Introduction to Electrodynamics, ISBN   0-13-805326-X
  15. John D. Jackson, Classical Electrodynamics, ISBN   0-471-30932-X.
  16. Gerald E. Marsh (1996), Force-free Magnetic Fields, World Scientific, ISBN   981-02-2497-4
  17. Heaviside, Oliver, "Electromagnetic theory". Appendices: D. On compressional electric or magnetic waves. Chelsea Pub Co; 3rd edition (1971) 082840237X
  18. Corum, K. L., and J. F. Corum, "The Zenneck surface wave", Nikola Tesla, Lightning Observations, and stationary waves, Appendix II. 1994.
  19. Lakes, Roderic (1998). "Experimental Limits on the Photon Mass and Cosmic Magnetic Vector Potential". Physical Review Letters. 80 (9): 1826–1829. Bibcode:1998PhRvL..80.1826L. doi:10.1103/PhysRevLett.80.1826.

Further reading