Pure tone

Last updated
A pure tone's pressure waveform versus time looks like this; its frequency determines the x axis scale; its amplitude determines the y axis scale; and its phase determines the x origin. Wave sine.svg
A pure tone's pressure waveform versus time looks like this; its frequency determines the x axis scale; its amplitude determines the y axis scale; and its phase determines the x origin.

In psychoacoustics and signal processing, a pure tone is a sound or a signal with a sinusoidal waveform; that is, a sine wave of any frequency, phase-shift, and amplitude. [1]

Contents

A pure tone has the property – unique among real-valued wave shapes – that its wave shape is unchanged by linear time-invariant systems; that is, only the phase and amplitude change between such a system's pure-tone input and its output.

Sine and cosine waves can be used as basic building blocks of more complex waves. As additional sine waves having different frequencies are combined, the waveform transforms from a sinusoidal shape into a more complex shape.

In clinical audiology, pure tones are used for pure-tone audiometry to characterize hearing thresholds at different frequencies. Sound localization is often more difficult with pure tones than with other sounds. [2] [3]

Relation to pitch and musical tones

Pure tones have been used by 19th century physicists like Georg Ohm and Hermann von Helmholtz to support theories asserting that the ear functions in a way equivalent to a Fourier frequency analysis. [4] [5] In Ohm's acoustic law, later further elaborated by Helmholtz, musical tones are perceived as a set of pure tones. The percept of pitch depends on the frequency of the most prominent tone, and the phases of the individual components is discarded. This theory has often been blamed for creating a confusion between pitch, frequency and pure tones. [6]

Unlike musical tones that are composed of the sum of a number of harmonically related sinusoidal components, pure tones only contain one such sinusoidal waveform. When presented in isolation, and when its frequency pertains to a certain range, pure tones give rise to a single pitch percept, which can be characterized by its frequency. In this situation, the instantaneous phase of the pure tone varies linearly with time. If a pure tone gives rise to a constant, steady-state percept, then it can be concluded that its phase does not influence this percept. However, when multiple pure tones are presented at once, like in musical tones, their relative phase plays a role in the resulting percept. In such a situation, the perceived pitch is not determined by the frequency of any individual component, but by the frequency relationship between these components (see missing fundamental).

See also

Related Research Articles

Additive synthesis is a sound synthesis technique that creates timbre by adding sine waves together.

<span class="mw-page-title-main">Harmonic series (music)</span> Sequence of frequencies

A harmonic series is the sequence of harmonics, musical tones, or pure tones whose frequency is an integer multiple of a fundamental frequency.

The amplitude of a periodic variable is a measure of its change in a single period. The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplitude, which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude.

In music, an octave or perfect octave is the interval between one musical pitch and another with double its frequency. The octave relationship is a natural phenomenon that has been referred to as the "basic miracle of music", the use of which is "common in most musical systems". The interval between the first and second harmonics of the harmonic series is an octave.

<span class="mw-page-title-main">Overtone</span> Tone with a frequency higher than the frequency of the reference tone

An overtone is any resonant frequency above the fundamental frequency of a sound. In other words, overtones are all pitches higher than the lowest pitch within an individual sound; the fundamental is the lowest pitch. While the fundamental is usually heard most prominently, overtones are actually present in any pitch except a true sine wave. The relative volume or amplitude of various overtone partials is one of the key identifying features of timbre, or the individual characteristic of a sound.

<span class="mw-page-title-main">Timbre</span> Quality of a musical note or sound or tone

In music, timbre, also known as tone color or tone quality, is the perceived sound quality of a musical note, sound or tone. Timbre distinguishes different types of sound production, such as choir voices and musical instruments. It also enables listeners to distinguish different instruments in the same category.

<span class="mw-page-title-main">Pitch (music)</span> Perceptual property in music ordering sounds from low to high

Pitch is a perceptual property of sounds that allows their ordering on a frequency-related scale, or more commonly, pitch is the quality that makes it possible to judge sounds as "higher" and "lower" in the sense associated with musical melodies. Pitch is a major auditory attribute of musical tones, along with duration, loudness, and timbre.

The cent is a logarithmic unit of measure used for musical intervals. Twelve-tone equal temperament divides the octave into 12 semitones of 100 cents each. Typically, cents are used to express small intervals, or to compare the sizes of comparable intervals in different tuning systems, and in fact the interval of one cent is too small to be perceived between successive notes.

<span class="mw-page-title-main">Sine wave</span> Wave shaped like the sine function

A sine wave, sinusoidal wave, or sinusoid is a periodic wave whose waveform (shape) is the trigonometric sine function. As a physical motion over time, this is simple harmonic motion, the one-dimensional projection of uniform circular motion.

A440 (also known as Stuttgart pitch) is the musical pitch corresponding to an audio frequency of 440 Hz, which serves as a tuning standard for the musical note of A above middle C, or A4 in scientific pitch notation. It is standardized by the International Organization for Standardization as ISO 16. While other frequencies have been (and occasionally still are) used to tune the first A above middle C, A440 is now commonly used as a reference frequency to calibrate acoustic equipment and to tune pianos, violins, and other musical instruments.

<span class="mw-page-title-main">Scientific pitch notation</span> Musical notation system to describe pitch and relative frequency

Scientific pitch notation (SPN), also known as American standard pitch notation (ASPN) and international pitch notation (IPN), is a method of specifying musical pitch by combining a musical note name and a number identifying the pitch's octave.

Musical acoustics or music acoustics is a multidisciplinary field that combines knowledge from physics, psychophysics, organology, physiology, music theory, ethnomusicology, signal processing and instrument building, among other disciplines. As a branch of acoustics, it is concerned with researching and describing the physics of music – how sounds are employed to make music. Examples of areas of study are the function of musical instruments, the human voice, computer analysis of melody, and in the clinical use of music in music therapy.

<span class="mw-page-title-main">Consonance and dissonance</span> Categorizations of simultaneous or successive sounds

In music, consonance and dissonance are categorizations of simultaneous or successive sounds. Within the Western tradition, some listeners associate consonance with sweetness, pleasantness, and acceptability, and dissonance with harshness, unpleasantness, or unacceptability, although there is broad acknowledgement that this depends also on familiarity and musical expertise. The terms form a structural dichotomy in which they define each other by mutual exclusion: a consonance is what is not dissonant, and a dissonance is what is not consonant. However, a finer consideration shows that the distinction forms a gradation, from the most consonant to the most dissonant. In casual discourse, as German composer and music theorist Paul Hindemith stressed, "The two concepts have never been completely explained, and for a thousand years the definitions have varied". The term sonance has been proposed to encompass or refer indistinctly to the terms consonance and dissonance.

<span class="mw-page-title-main">Beat (acoustics)</span> Term in acoustics

In acoustics, a beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies.

<span class="mw-page-title-main">Volley theory</span>

Volley theory states that groups of neurons of the auditory system respond to a sound by firing action potentials slightly out of phase with one another so that when combined, a greater frequency of sound can be encoded and sent to the brain to be analyzed. The theory was proposed by Ernest Wever and Charles Bray in 1930 as a supplement to the frequency theory of hearing. It was later discovered that this only occurs in response to sounds that are about 500 Hz to 5000 Hz.

The Technos Acxel is a resynthesizer, launched by the Quebec-based company Technos in 1987. It was the first dedicated resynthesizer machine, and was also capable of additive synthesis. The Acxel was invented by Pierre Guilmette, the operational design was a Nil Parent realization, and the system was developed at Technos, a company owned and directed by Pierre Guilmette, Nil Parent and other partners.

Ohm's acoustic law, sometimes called the acoustic phase law or simply Ohm's law, states that a musical sound is perceived by the ear as a set of a number of constituent pure harmonic tones.

<span class="mw-page-title-main">Musical temperament</span> Musical tuning system

In musical tuning, a temperament is a tuning system that slightly compromises the pure intervals of just intonation to meet other requirements. Most modern Western musical instruments are tuned in the equal temperament system. Tempering is the process of altering the size of an interval by making it narrower or wider than pure. "Any plan that describes the adjustments to the sizes of some or all of the twelve fifth intervals in the circle of fifths so that they accommodate pure octaves and produce certain sizes of major thirds is called a temperament." Temperament is especially important for keyboard instruments, which typically allow a player to play only the pitches assigned to the various keys, and lack any way to alter pitch of a note in performance. Historically, the use of just intonation, Pythagorean tuning and meantone temperament meant that such instruments could sound "in tune" in one key, or some keys, but would then have more dissonance in other keys.

<span class="mw-page-title-main">Musical tone</span> Steady periodic sound in music

Traditionally in Western music, a musical tone is a steady periodic sound. A musical tone is characterized by its duration, pitch, intensity, and timbre. The notes used in music can be more complex than musical tones, as they may include aperiodic aspects, such as attack transients, vibrato, and envelope modulation.

Virtual Hammock describes the effect of using structured sound from two isolated, stationary speakers playing into opposite ears to induce the perception of being in the presence of a single sound source which is moving back-and-forth. Rather than relying solely on a variation in sound amplitude of one speaker compared to the other, the Virtual Hammock effect utilizes a shift in phase of the sound wave of one side compared with the other. This stimulates the same physiological response in the Medial Superior Olive (MSO) portion of the brain stem—the first processing stop for auditory nerves—as is induced by an actual moving sound source. Any waveform within certain frequency bounds can be used to achieve this effect. The specific case of playing sinusoidal waves of different frequencies, which creates a continuously varying sensation of the sound source moving from side-to-side, is referred to as a binaural beat. Similarly, playing square waves of two different frequencies will create a sensation of swaying back and forth.

References

  1. ANSI S1.1-1994 Acoustical Terminology
  2. Stanley Smith Stevens and Edwin B. Newman (1936). "The localization of actual sources of sound". The American Journal of Psychology. 48 (2): 297–306. doi:10.2307/1415748. JSTOR   1415748.
  3. Hartmann, W. M. (1983). "Localization of sound in rooms". The Journal of the Acoustical Society of America. 74 (5): 1380–1391. Bibcode:1983ASAJ...74.1380H. doi:10.1121/1.390163. PMID   6643850.
  4. von Helmholtz, Hermann L. F.; Ellis, Alexander J. (1875). On the sensations of tone as a physiological basis for the theory of music. London, UK: Longmans, Green, and Co.
  5. Ohm, Georg (1843). "Ueber die Definition des Tones, nebst daran geknupfter Theorie der Sirene und ahnlicher tonbildenden Vorrichtungen". Poggendor's Annalen der Physik und Chemie. 59: 513–565.
  6. W. Dixon Ward (1970). "Musical Perception". In Jerry V. Tobias (ed.). Foundations of Modern Auditory Theory. Vol. 1. Academic Press. p. 438.