Linear time-invariant system

Last updated
Block diagram illustrating the superposition principle and time invariance for a deterministic continuous-time single-input single-output system. The system satisfies the superposition principle and is time-invariant if and only if y3(t) = a1y1(t - t0) + a2y2(t - t0) for all time t, for all real constants a1, a2, t0 and for all inputs x1(t), x2(t). Click image to expand it. Superposition principle and time invariance block diagram for a SISO system.png
Block diagram illustrating the superposition principle and time invariance for a deterministic continuous-time single-input single-output system. The system satisfies the superposition principle and is time-invariant if and only if y3(t) = a1y1(tt0) + a2y2(tt0) for all time t, for all real constants a1, a2, t0 and for all inputs x1(t), x2(t). Click image to expand it.

In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (xh)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers. [2]

Contents

Linear time-invariant system theory is also used in image processing, where the systems have spatial dimensions instead of, or in addition to, a temporal dimension. These systems may be referred to as linear translation-invariant to give the terminology the most general reach. In the case of generic discrete-time (i.e., sampled) systems, linear shift-invariant is the corresponding term. LTI system theory is an area of applied mathematics which has direct applications in electrical circuit analysis and design, signal processing and filter design, control theory, mechanical engineering, image processing, the design of measuring instruments of many sorts, NMR spectroscopy [ citation needed ], and many other technical areas where systems of ordinary differential equations present themselves.

Overview

The defining properties of any LTI system are linearity and time invariance.

The fundamental result in LTI system theory is that any LTI system can be characterized entirely by a single function called the system's impulse response. The output of the system is simply the convolution of the input to the system with the system's impulse response . This is called a continuous time system. Similarly, a discrete-time linear time-invariant (or, more generally, "shift-invariant") system is defined as one operating in discrete time: where y, x, and h are sequences and the convolution, in discrete time, uses a discrete summation rather than an integral.

Relationship between the time domain and the frequency domain LTI.png
Relationship between the time domain and the frequency domain

LTI systems can also be characterized in the frequency domain by the system's transfer function, which is the Laplace transform of the system's impulse response (or Z transform in the case of discrete-time systems). As a result of the properties of these transforms, the output of the system in the frequency domain is the product of the transfer function and the transform of the input. In other words, convolution in the time domain is equivalent to multiplication in the frequency domain.

For all LTI systems, the eigenfunctions, and the basis functions of the transforms, are complex exponentials. This is, if the input to a system is the complex waveform for some complex amplitude and complex frequency , the output will be some complex constant times the input, say for some new complex amplitude . The ratio is the transfer function at frequency .

Since sinusoids are a sum of complex exponentials with complex-conjugate frequencies, if the input to the system is a sinusoid, then the output of the system will also be a sinusoid, perhaps with a different amplitude and a different phase, but always with the same frequency upon reaching steady-state. LTI systems cannot produce frequency components that are not in the input.

LTI system theory is good at describing many important systems. Most LTI systems are considered "easy" to analyze, at least compared to the time-varying and/or nonlinear [ disambiguation needed ] case. Any system that can be modeled as a linear differential equation with constant coefficients is an LTI system. Examples of such systems are electrical circuits made up of resistors, inductors, and capacitors (RLC circuits). Ideal spring–mass–damper systems are also LTI systems, and are mathematically equivalent to RLC circuits.

Most LTI system concepts are similar between the continuous-time and discrete-time (linear shift-invariant) cases. In image processing, the time variable is replaced with two space variables, and the notion of time invariance is replaced by two-dimensional shift invariance. When analyzing filter banks and MIMO systems, it is often useful to consider vectors of signals.

A linear system that is not time-invariant can be solved using other approaches such as the Green function method.

Continuous-time systems

Impulse response and convolution

The behavior of a linear, continuous-time, time-invariant system with input signal x(t) and output signal y(t) is described by the convolution integral: [3]

      (using commutativity)

where is the system's response to an impulse: . is therefore proportional to a weighted average of the input function . The weighting function is , simply shifted by amount . As changes, the weighting function emphasizes different parts of the input function. When is zero for all negative , depends only on values of prior to time , and the system is said to be causal.

To understand why the convolution produces the output of an LTI system, let the notation represent the function with variable and constant . And let the shorter notation represent . Then a continuous-time system transforms an input function, into an output function, . And in general, every value of the output can depend on every value of the input. This concept is represented by:

where is the transformation operator for time . In a typical system, depends most heavily on the values of that occurred near time . Unless the transform itself changes with , the output function is just constant, and the system is uninteresting.

For a linear system, must satisfy Eq.1 :

(Eq.2)

And the time-invariance requirement is:

(Eq.3)

In this notation, we can write the impulse response as

Similarly:

      (using Eq.3 )

Substituting this result into the convolution integral:

which has the form of the right side of Eq.2 for the case and

Eq.2 then allows this continuation:

In summary, the input function, , can be represented by a continuum of time-shifted impulse functions, combined "linearly", as shown at Eq.1. The system's linearity property allows the system's response to be represented by the corresponding continuum of impulse responses, combined in the same way. And the time-invariance property allows that combination to be represented by the convolution integral.

The mathematical operations above have a simple graphical simulation. [4]

Exponentials as eigenfunctions

An eigenfunction is a function for which the output of the operator is a scaled version of the same function. That is,

where f is the eigenfunction and is the eigenvalue, a constant.

The exponential functions , where , are eigenfunctions of a linear, time-invariant operator. A simple proof illustrates this concept. Suppose the input is . The output of the system with impulse response is then

which, by the commutative property of convolution, is equivalent to

where the scalar

is dependent only on the parameter s.

So the system's response is a scaled version of the input. In particular, for any , the system output is the product of the input and the constant . Hence, is an eigenfunction of an LTI system, and the corresponding eigenvalue is .

Direct proof

It is also possible to directly derive complex exponentials as eigenfunctions of LTI systems.

Let's set some complex exponential and a time-shifted version of it.

by linearity with respect to the constant .

by time invariance of .

So . Setting and renaming we get:

i.e. that a complex exponential as input will give a complex exponential of same frequency as output.

Fourier and Laplace transforms

The eigenfunction property of exponentials is very useful for both analysis and insight into LTI systems. The one-sided Laplace transform

is exactly the way to get the eigenvalues from the impulse response. Of particular interest are pure sinusoids (i.e., exponential functions of the form where and ). The Fourier transform gives the eigenvalues for pure complex sinusoids. Both of and are called the system function, system response, or transfer function.

The Laplace transform is usually used in the context of one-sided signals, i.e. signals that are zero for all values of t less than some value. Usually, this "start time" is set to zero, for convenience and without loss of generality, with the transform integral being taken from zero to infinity (the transform shown above with lower limit of integration of negative infinity is formally known as the bilateral Laplace transform).

The Fourier transform is used for analyzing systems that process signals that are infinite in extent, such as modulated sinusoids, even though it cannot be directly applied to input and output signals that are not square integrable. The Laplace transform actually works directly for these signals if they are zero before a start time, even if they are not square integrable, for stable systems. The Fourier transform is often applied to spectra of infinite signals via the Wiener–Khinchin theorem even when Fourier transforms of the signals do not exist.

Due to the convolution property of both of these transforms, the convolution that gives the output of the system can be transformed to a multiplication in the transform domain, given signals for which the transforms exist

One can use the system response directly to determine how any particular frequency component is handled by a system with that Laplace transform. If we evaluate the system response (Laplace transform of the impulse response) at complex frequency s = , where ω = 2πf, we obtain |H(s)| which is the system gain for frequency f. The relative phase shift between the output and input for that frequency component is likewise given by arg(H(s)).

Examples

  • A simple example of an LTI operator is the derivative.
    •   (i.e., it is linear)
    •   (i.e., it is time invariant)

    When the Laplace transform of the derivative is taken, it transforms to a simple multiplication by the Laplace variable s.

    That the derivative has such a simple Laplace transform partly explains the utility of the transform.
  • Another simple LTI operator is an averaging operator

    By the linearity of integration,

    it is linear. Additionally, because

    it is time invariant. In fact, can be written as a convolution with the boxcar function . That is,

    where the boxcar function

Important system properties

Some of the most important properties of a system are causality and stability. Causality is a necessity for a physical system whose independent variable is time, however this restriction is not present in other cases such as image processing.

Causality

A system is causal if the output depends only on present and past, but not future inputs. A necessary and sufficient condition for causality is

where is the impulse response. It is not possible in general to determine causality from the two-sided Laplace transform. However when working in the time domain one normally uses the one-sided Laplace transform which requires causality.

Stability

A system is bounded-input, bounded-output stable (BIBO stable) if, for every bounded input, the output is finite. Mathematically, if every input satisfying

leads to an output satisfying

(that is, a finite maximum absolute value of implies a finite maximum absolute value of ), then the system is stable. A necessary and sufficient condition is that , the impulse response, is in L1 (has a finite L1 norm):

In the frequency domain, the region of convergence must contain the imaginary axis .

As an example, the ideal low-pass filter with impulse response equal to a sinc function is not BIBO stable, because the sinc function does not have a finite L1 norm. Thus, for some bounded input, the output of the ideal low-pass filter is unbounded. In particular, if the input is zero for and equal to a sinusoid at the cut-off frequency for , then the output will be unbounded for all times other than the zero crossings.[ dubious ]

Deriving the Solution of Linear Time-Invariant Differential Equations

Given is an explicit linear system of differential equations in the form:

with the state vector , the system matrix , the input , the input vector and the initial condition . The solution consists of a homogeneous and a particular part.

Homogeneous solution

The homogeneous differential equation is obtained by setting the input equal to zero.

This solution can now be described using a Taylor series representation:

where is the unit matrix. Substituting this solution into the above equation, one obtains:

Now the unknown matrices can be determined by comparing coefficients:

The following notation is commonly used for the fundamental matrix :

Particular solution

Assuming and , follows:

The particular solution is obtained in the form:

where is an unknown function vector with . From the above two equations follows:

Thus can be determined:

One obtains by integration utilizing the properties of the fundamental matrix:

Thus, we finally obtain the solution of a linear time-invariant differential equation:

Discrete-time systems

Almost everything in continuous-time systems has a counterpart in discrete-time systems.

Discrete-time systems from continuous-time systems

In many contexts, a discrete time (DT) system is really part of a larger continuous time (CT) system. For example, a digital recording system takes an analog sound, digitizes it, possibly processes the digital signals, and plays back an analog sound for people to listen to.

In practical systems, DT signals obtained are usually uniformly sampled versions of CT signals. If is a CT signal, then the sampling circuit used before an analog-to-digital converter will transform it to a DT signal:

where T is the sampling period. Before sampling, the input signal is normally run through a so-called Nyquist filter which removes frequencies above the "folding frequency" 1/(2T); this guarantees that no information in the filtered signal will be lost. Without filtering, any frequency component above the folding frequency (or Nyquist frequency) is aliased to a different frequency (thus distorting the original signal), since a DT signal can only support frequency components lower than the folding frequency.

Impulse response and convolution

Let represent the sequence

And let the shorter notation represent

A discrete system transforms an input sequence, into an output sequence, In general, every element of the output can depend on every element of the input. Representing the transformation operator by , we can write:

Note that unless the transform itself changes with n, the output sequence is just constant, and the system is uninteresting. (Thus the subscript, n.) In a typical system, y[n] depends most heavily on the elements of x whose indices are near n.

For the special case of the Kronecker delta function, the output sequence is the impulse response:

For a linear system, must satisfy:

(Eq.4)

And the time-invariance requirement is:

(Eq.5)

In such a system, the impulse response, , characterizes the system completely. That is, for any input sequence, the output sequence can be calculated in terms of the input and the impulse response. To see how that is done, consider the identity:

which expresses in terms of a sum of weighted delta functions.

Therefore:

where we have invoked Eq.4 for the case and .

And because of Eq.5 , we may write:

Therefore:

      (commutativity)

which is the familiar discrete convolution formula. The operator can therefore be interpreted as proportional to a weighted average of the function x[k]. The weighting function is h[−k], simply shifted by amount n. As n changes, the weighting function emphasizes different parts of the input function. Equivalently, the system's response to an impulse at n=0 is a "time" reversed copy of the unshifted weighting function. When h[k] is zero for all negative k, the system is said to be causal.

Exponentials as eigenfunctions

An eigenfunction is a function for which the output of the operator is the same function, scaled by some constant. In symbols,

where f is the eigenfunction and is the eigenvalue, a constant.

The exponential functions , where , are eigenfunctions of a linear, time-invariant operator. is the sampling interval, and . A simple proof illustrates this concept.

Suppose the input is . The output of the system with impulse response is then

which is equivalent to the following by the commutative property of convolution

where

is dependent only on the parameter z.

So is an eigenfunction of an LTI system because the system response is the same as the input times the constant .

Z and discrete-time Fourier transforms

The eigenfunction property of exponentials is very useful for both analysis and insight into LTI systems. The Z transform

is exactly the way to get the eigenvalues from the impulse response.[ clarification needed ] Of particular interest are pure sinusoids; i.e. exponentials of the form , where . These can also be written as with [ clarification needed ]. The discrete-time Fourier transform (DTFT) gives the eigenvalues of pure sinusoids[ clarification needed ]. Both of and are called the system function, system response, or transfer function.

Like the one-sided Laplace transform, the Z transform is usually used in the context of one-sided signals, i.e. signals that are zero for t<0. The discrete-time Fourier transform Fourier series may be used for analyzing periodic signals.

Due to the convolution property of both of these transforms, the convolution that gives the output of the system can be transformed to a multiplication in the transform domain. That is,

Just as with the Laplace transform transfer function in continuous-time system analysis, the Z transform makes it easier to analyze systems and gain insight into their behavior.

Examples

  • A simple example of an LTI operator is the delay operator .
    •   (i.e., it is linear)
    •   (i.e., it is time invariant)

    The Z transform of the delay operator is a simple multiplication by z−1. That is,

  • Another simple LTI operator is the averaging operator

    Because of the linearity of sums,

    and so it is linear. Because,

    it is also time invariant.

Important system properties

The input-output characteristics of discrete-time LTI system are completely described by its impulse response . Two of the most important properties of a system are causality and stability. Non-causal (in time) systems can be defined and analyzed as above, but cannot be realized in real-time. Unstable systems can also be analyzed and built, but are only useful as part of a larger system whose overall transfer function is stable.

Causality

A discrete-time LTI system is causal if the current value of the output depends on only the current value and past values of the input. [5] A necessary and sufficient condition for causality is

where is the impulse response. It is not possible in general to determine causality from the Z transform, because the inverse transform is not unique[ dubious ]. When a region of convergence is specified, then causality can be determined.

Stability

A system is bounded input, bounded output stable (BIBO stable) if, for every bounded input, the output is finite. Mathematically, if

implies that

(that is, if bounded input implies bounded output, in the sense that the maximum absolute values of and are finite), then the system is stable. A necessary and sufficient condition is that , the impulse response, satisfies

In the frequency domain, the region of convergence must contain the unit circle (i.e., the locus satisfying for complex z).

Notes

  1. Bessai, Horst J. (2005). MIMO Signals and Systems. Springer. pp. 27–28. ISBN   0-387-23488-8.
  2. Hespanha 2009, p. 78.
  3. Crutchfield, p. 1. Welcome!
  4. Crutchfield, p. 1. Exercises
  5. Phillips 2007, p. 508.

See also

Related Research Articles

<span class="mw-page-title-main">Convolution</span> Integral expressing the amount of overlap of one function as it is shifted over another

In mathematics, convolution is a mathematical operation on two functions that produces a third function. The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result. Graphically, it expresses how the 'shape' of one function is modified by the other.

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

In engineering, a transfer function of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. It is widely used in electronic engineering tools like circuit simulators and control systems. In simple cases, this function can be represented as a two-dimensional graph of an independent scalar input versus the dependent scalar output. Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in electronics and control theory.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

In signal processing, group delay and phase delay are two related ways of describing how a signal's frequency components are delayed in time when passing through a linear time-invariant (LTI) system. Phase delay describes the time shift of a sinusoidal component. Group delay describes the time shift of the envelope of a wave packet, a "pack" or "group" of oscillations centered around one frequency that travel together, formed for instance by multiplying a sine wave by an envelope.

In mathematics, a partition of unity of a topological space is a set of continuous functions from to the unit interval [0,1] such that for every point :

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes as input a function and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.

<span class="mw-page-title-main">Heaviside step function</span> Indicator function of positive numbers

The Heaviside step function, or the unit step function, usually denoted by H or θ, is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for nonnegative arguments. It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one.

Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely.

In control theory and signal processing, a linear, time-invariant system is said to be minimum-phase if the system and its inverse are causal and stable.

In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see § Definition). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° (π/2 radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see § Relationship with the Fourier transform). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.

In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstraction or idealization, linear systems find important applications in automatic control theory, signal processing, and telecommunications. For example, the propagation medium for wireless communication systems can often be modeled by linear systems.

In signal processing, specifically control theory, bounded-input, bounded-output (BIBO) stability is a form of stability for signals and systems that take inputs. If a system is BIBO stable, then the output will be bounded for every input to the system that is bounded.

<span class="mw-page-title-main">Bring radical</span> Real root of the polynomial x^5+x+a

In algebra, the Bring radical or ultraradical of a real number a is the unique real root of the polynomial

<span class="mw-page-title-main">Wigner distribution function</span>

The Wigner distribution function (WDF) is used in signal processing as a transform in time-frequency analysis.

<span class="mw-page-title-main">Toroidal coordinates</span>

Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

In control theory, we may need to find out whether or not a system such as

In physics and mathematics, the spacetime triangle diagram (STTD) technique, also known as the Smirnov method of incomplete separation of variables, is the direct space-time domain method for electromagnetic and scalar wave motion.

In the mathematical field of group theory, an Artin transfer is a certain homomorphism from an arbitrary finite or infinite group to the commutator quotient group of a subgroup of finite index. Originally, such mappings arose as group theoretic counterparts of class extension homomorphisms of abelian extensions of algebraic number fields by applying Artin's reciprocity maps to ideal class groups and analyzing the resulting homomorphisms between quotients of Galois groups. However, independently of number theoretic applications, a partial order on the kernels and targets of Artin transfers has recently turned out to be compatible with parent-descendant relations between finite p-groups, which can be visualized in descendant trees. Therefore, Artin transfers provide a valuable tool for the classification of finite p-groups and for searching and identifying particular groups in descendant trees by looking for patterns defined by the kernels and targets of Artin transfers. These strategies of pattern recognition are useful in purely group theoretic context, as well as for applications in algebraic number theory concerning Galois groups of higher p-class fields and Hilbert p-class field towers.

References

Further reading