This article includes a list of general references, but it lacks sufficient corresponding inline citations .(September 2015) |
In mathematics, the two-sided Laplace transform or bilateral Laplace transform is an integral transform equivalent to probability's moment-generating function. Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f(t) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral
The integral is most commonly understood as an improper integral, which converges if and only if both integrals
exist. There seems to be no generally accepted notation for the two-sided transform; the used here recalls "bilateral". The two-sided transform used by some authors is
In pure mathematics the argument t can be any variable, and Laplace transforms are used to study how differential operators transform the function.
In science and engineering applications, the argument t often represents time (in seconds), and the function f(t) often represents a signal or waveform that varies with time. In these cases, the signals are transformed by filters, that work like a mathematical operator, but with a restriction. They have to be causal, which means that the output in a given time t cannot depend on an output which is a higher value of t. In population ecology, the argument t often represents spatial displacement in a dispersal kernel.
When working with functions of time, f(t) is called the time domain representation of the signal, while F(s) is called the s-domain (or Laplace domain) representation. The inverse transformation then represents a synthesis of the signal as the sum of its frequency components taken over all frequencies, whereas the forward transformation represents the analysis of the signal into its frequency components.
The Fourier transform can be defined in terms of the two-sided Laplace transform:
Note that definitions of the Fourier transform differ, and in particular
is often used instead. In terms of the Fourier transform, we may also obtain the two-sided Laplace transform, as
The Fourier transform is normally defined so that it exists for real values; the above definition defines the image in a strip which may not include the real axis where the Fourier transform is supposed to converge.
This is then why Laplace transforms retain their value in control theory and signal processing: the convergence of a Fourier transform integral within its domain only means that a linear, shift-invariant system described by it is stable or critical. The Laplace one on the other hand will somewhere converge for every impulse response which is at most exponentially growing, because it involves an extra term which can be taken as an exponential regulator. Since there are no superexponentially growing linear feedback networks, Laplace transform based analysis and solution of linear, shift-invariant systems, takes its most general form in the context of Laplace, not Fourier, transforms.
At the same time, nowadays Laplace transform theory falls within the ambit of more general integral transforms, or even general harmonic analysis. In that framework and nomenclature, Laplace transforms are simply another form of Fourier analysis, even if more general in hindsight.
If u is the Heaviside step function, equal to zero when its argument is less than zero, to one-half when its argument equals zero, and to one when its argument is greater than zero, then the Laplace transform may be defined in terms of the two-sided Laplace transform by
On the other hand, we also have
where is the function that multiplies by minus one (), so either version of the Laplace transform can be defined in terms of the other.
The Mellin transform may be defined in terms of the two-sided Laplace transform by
with as above, and conversely we can get the two-sided transform from the Mellin transform by
The moment-generating function of a continuous probability density function ƒ(x) can be expressed as .
The following properties can be found in Bracewell (2000) and Oppenheim & Willsky (1997)
Property | Time domain | s domain | Strip of convergence | Comment |
---|---|---|---|---|
Definition | ||||
Time scaling | ||||
Reversal | ||||
Frequency-domain derivative | ||||
Frequency-domain general derivative | ||||
Derivative | ||||
General derivative | ||||
Frequency-domain integration | only valid if the integral exists | |||
Time-domain integral | ||||
Time-domain integral | ||||
Frequency shifting | ||||
Time shifting | ||||
Modulation | ||||
Finite difference | ||||
Multiplication | . The integration is done along the vertical line Re(σ) = c inside the region of convergence. | |||
Complex conjugation | ||||
Convolution | ||||
Cross-correlation |
Most properties of the bilateral Laplace transform are very similar to properties of the unilateral Laplace transform, but there are some important differences:
unilateral time domain | bilateral time domain | unilateral-'s' domain | bilateral-'s' domain | |
---|---|---|---|---|
Differentiation | ||||
Second-order differentiation | ||||
Convolution | ||||
Cross-correlation | ||||
Let and be functions with bilateral Laplace transforms and in the strips of convergence . Let with . Then Parseval's theorem holds: [1]
This theorem is proved by applying the inverse Laplace transform on the convolution theorem in form of the cross-correlation.
Let be a function with bilateral Laplace transform in the strip of convergence . Let with . Then the Plancherel theorem holds: [2]
For any two functions for which the two-sided Laplace transforms exist, if i.e. for every value of then almost everywhere.
Bilateral transform requirements for convergence are more difficult than for unilateral transforms. The region of convergence will be normally smaller.
If f is a locally integrable function (or more generally a Borel measure locally of bounded variation), then the Laplace transform F(s) of f converges provided that the limit
exists. The Laplace transform converges absolutely if the integral
exists (as a proper Lebesgue integral). The Laplace transform is usually understood as conditionally convergent, meaning that it converges in the former instead of the latter sense.
The set of values for which F(s) converges absolutely is either of the form Re(s) > a or else Re(s) ≥ a, where a is an extended real constant, −∞ ≤ a ≤ ∞. (This follows from the dominated convergence theorem.) The constant a is known as the abscissa of absolute convergence, and depends on the growth behavior of f(t). [3] Analogously, the two-sided transform converges absolutely in a strip of the form a < Re(s) < b, and possibly including the lines Re(s) = a or Re(s) = b. [4] The subset of values of s for which the Laplace transform converges absolutely is called the region of absolute convergence or the domain of absolute convergence. In the two-sided case, it is sometimes called the strip of absolute convergence. The Laplace transform is analytic in the region of absolute convergence.
Similarly, the set of values for which F(s) converges (conditionally or absolutely) is known as the region of conditional convergence, or simply the region of convergence (ROC). If the Laplace transform converges (conditionally) at s = s0, then it automatically converges for all s with Re(s) > Re(s0). Therefore, the region of convergence is a half-plane of the form Re(s) > a, possibly including some points of the boundary line Re(s) = a. In the region of convergence Re(s) > Re(s0), the Laplace transform of f can be expressed by integrating by parts as the integral
That is, in the region of convergence F(s) can effectively be expressed as the absolutely convergent Laplace transform of some other function. In particular, it is analytic.
There are several Paley–Wiener theorems concerning the relationship between the decay properties of f and the properties of the Laplace transform within the region of convergence.
In engineering applications, a function corresponding to a linear time-invariant (LTI) system is stable if every bounded input produces a bounded output.
Bilateral transforms do not respect causality. They make sense when applied over generic functions but when working with functions of time (signals) unilateral transforms are preferred.
Following list of interesting examples for the bilateral Laplace transform can be deduced from the corresponding Fourier or unilateral Laplace transformations (see also Bracewell (2000)):
Function | Time domain | Laplace s-domain | Region of convergence | Comment |
---|---|---|---|---|
Rectangular impulse | ||||
Triangular impulse | ||||
Gaussian impulse | ||||
Exponential decay | is the Heaviside step function | |||
Exponential growth | ||||
In mathematics, convolution is a mathematical operation on two functions that produces a third function. The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result. Graphically, it expresses how the 'shape' of one function is modified by the other.
In mathematics, the Laplace transform, named after Pierre-Simon Laplace, is an integral transform that converts a function of a real variable to a function of a complex variable .
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.
In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.
A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.
In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables. However, not all random variables have moment-generating functions.
In fractional calculus, an area of mathematical analysis, the differintegral is a combined differentiation/integration operator. Applied to a function ƒ, the q-differintegral of f, here denoted by
In mathematics, the inverse Laplace transform of a function is the piecewise-continuous and exponentially-restricted real function which has the property:
The Laplace–Stieltjes transform, named for Pierre-Simon Laplace and Thomas Joannes Stieltjes, is an integral transform similar to the Laplace transform. For real-valued functions, it is the Laplace transform of a Stieltjes measure, however it is often defined for functions with values in a Banach space. It is useful in a number of areas of mathematics, including functional analysis, and certain areas of theoretical and applied probability.
In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions.
In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.
In mathematics, the Riemann–Liouville integral associates with a real function another function Iαf of the same kind for each value of the parameter α > 0. The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, Iαf is an iterated antiderivative of f of order α. The Riemann–Liouville integral is named for Bernhard Riemann and Joseph Liouville, the latter of whom was the first to consider the possibility of fractional calculus in 1832. The operator agrees with the Euler transform, after Leonhard Euler, when applied to analytic functions. It was generalized to arbitrary dimensions by Marcel Riesz, who introduced the Riesz potential.
In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet, one of which is the improper integral of the sinc function over the positive real line:
In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.
In mathematics, the Mellin inversion formula tells us conditions under which the inverse Mellin transform, or equivalently the inverse two-sided Laplace transform, are defined and recover the transformed function.
In mathematics, Borel summation is a summation method for divergent series, introduced by Émile Borel. It is particularly useful for summing divergent asymptotic series, and in some sense gives the best possible sum for such series. There are several variations of this method that are also called Borel summation, and a generalization of it called Mittag-Leffler summation.
In mathematics, the Weierstrass transform of a function f : R → R, named after Karl Weierstrass, is a "smoothed" version of f(x) obtained by averaging the values of f, weighted with a Gaussian centered at x.
In mathematical analysis, the Dirichlet kernel, named after the German mathematician Peter Gustav Lejeune Dirichlet, is the collection of periodic functions defined as
In mathematics, Katugampola fractional operators are integral operators that generalize the Riemann–Liouville and the Hadamard fractional operators into a unique form. The Katugampola fractional integral generalizes both the Riemann–Liouville fractional integral and the Hadamard fractional integral into a single form and It is also closely related to the Erdelyi–Kober operator that generalizes the Riemann–Liouville fractional integral. Katugampola fractional derivative has been defined using the Katugampola fractional integral and as with any other fractional differential operator, it also extends the possibility of taking real number powers or complex number powers of the integral and differential operators.
In analytic number theory, a Dirichlet series, or Dirichlet generating function (DGF), of a sequence is a common way of understanding and summing arithmetic functions in a meaningful way. A little known, or at least often forgotten about, way of expressing formulas for arithmetic functions and their summatory functions is to perform an integral transform that inverts the operation of forming the DGF of a sequence. This inversion is analogous to performing an inverse Z-transform to the generating function of a sequence to express formulas for the series coefficients of a given ordinary generating function.