Harmonic analysis

Last updated

The harmonics of color. The harmonic-analysis chart shows how the different wavelengths interact with red light. At a difference of l/2 (half wavelength), red is perfectly in sync with its second harmonic in the ultraviolet. All other wavelengths in the visual spectrum have less than a l/2 difference between them, forming harmonic oscillations in the combined waves. At l/14, the oscillations cycle every 14th wave, while at l/8 they will cycle every 8th. The oscillations are most rapid at l/4, cycling every 4th wave, while at l/3 they cycle every 7th wave, and at l/2.5 they cycle every 13th. The lower section shows how the l/4 harmonic interacts in visible light (green and red), as photographed in an optical flat. Light wave harmonic diagram.svg
The harmonics of color. The harmonic-analysis chart shows how the different wavelengths interact with red light. At a difference of λ/2 (half wavelength), red is perfectly in sync with its second harmonic in the ultraviolet. All other wavelengths in the visual spectrum have less than a λ/2 difference between them, forming harmonic oscillations in the combined waves. At λ/14, the oscillations cycle every 14th wave, while at λ/8 they will cycle every 8th. The oscillations are most rapid at λ/4, cycling every 4th wave, while at λ/3 they cycle every 7th wave, and at λ/2.5 they cycle every 13th. The lower section shows how the λ/4 harmonic interacts in visible light (green and red), as photographed in an optical flat.

Harmonic analysis is a branch of mathematics concerned with the representation of functions or signals as the superposition of basic waves, and the study of and generalization of the notions of Fourier series and Fourier transforms (i.e. an extended form of Fourier analysis). In the past two centuries, it has become a vast subject with applications in areas as diverse as number theory, representation theory, signal processing, quantum mechanics, tidal analysis and neuroscience.

Mathematics field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Function (mathematics) Mathematical binary relation

In mathematics, a function was originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable. The concept of function was formalized at the end of the 19th century in terms of set theory, and this greatly enlarged the domains of application of the concept.

Superposition principle fundamental physics principle stating that physical solutions of linear systems are linear

The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So that if input A produces response X and input B produces response Y then input produces response.


The term "harmonics" originated as the Ancient Greek word harmonikos, meaning "skilled in music". [1] In physical eigenvalue problems, it began to mean waves whose frequencies are integer multiples of one another, as are the frequencies of the harmonics of music notes, but the term has been generalized beyond its original meaning.


A harmonic is any member of the harmonic series. The term is employed in various disciplines, including music, physics, acoustics, electronic power transmission, radio technology, and other fields. It is typically applied to repeating signals, such as sinusoidal waves. A harmonic of such a wave is a wave with a frequency that is a positive integer multiple of the frequency of the original wave, known as the fundamental frequency. The original wave is also called the 1st harmonic, the following harmonics are known as higher harmonics. As all harmonics are periodic at the fundamental frequency, the sum of harmonics is also periodic at that frequency. For example, if the fundamental frequency is 50 Hz, a common AC power supply frequency, the frequencies of the first three higher harmonics are 100 Hz, 150 Hz, 200 Hz and any addition of waves with these frequencies is periodic at 50 Hz.

An nth characteristic mode, for n > 1, will have nodes that are not vibrating. For example, the 3rd characteristic mode will have nodes at L and L, where L is the length of the string. In fact, each nth characteristic mode, for n not a multiple of 3, will not have nodes at these points. These other characteristic modes will be vibrating at the positions L and L. If the player gently touches one of these positions, then these other characteristic modes will be suppressed. The tonal harmonics from these other characteristic modes will then also be suppressed. Consequently, the tonal harmonics from the nth characteristic modes, where n is a multiple of 3, will be made relatively more prominent.

Ancient Greek Version of the Greek language used from roughly the 9th century BCE to the 6th century CE

The Ancient Greek language includes the forms of Greek used in Ancient Greece and the ancient world from around the 9th century BCE to the 6th century CE. It is often roughly divided into the Archaic period, Classical period, and Hellenistic period. It is antedated in the second millennium BCE by Mycenaean Greek and succeeded by medieval Greek.

In science, a multiple is the product of any quantity and an integer. In other words, for the quantities a and b, we say that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that b/a is an integer.

The classical Fourier transform on Rn is still an area of ongoing research, particularly concerning Fourier transformation on more general objects such as tempered distributions. For instance, if we impose some requirements on a distribution f, we can attempt to translate these requirements in terms of the Fourier transform of f. The Paley–Wiener theorem is an example of this. The Paley–Wiener theorem immediately implies that if f is a nonzero distribution of compact support (these include functions of compact support), then its Fourier transform is never compactly supported. This is a very elementary form of an uncertainty principle in a harmonic-analysis setting. See also: Convergence of Fourier series.

In mathematics, a Paley–Wiener theorem is any theorem that relates decay properties of a function or distribution at infinity with analyticity of its Fourier transform. The theorem is named for Raymond Paley (1907–1933) and Norbert Wiener (1894–1964). The original theorems did not use the language of distributions, and instead applied to square-integrable functions. The first such theorem using distributions was due to Laurent Schwartz.

Distributions are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are distributions, such as the Dirac delta function.

In quantum mechanics, the uncertainty principle is any of a variety of mathematical inequalities asserting a fundamental limit to the precision with which certain pairs of physical properties of a particle, known as complementary variables or canonically conjugate variables such as position x and momentum p, can be known.

Fourier series can be conveniently studied in the context of Hilbert spaces, which provides a connection between harmonic analysis and functional analysis.

Hilbert space inner product space that is metrically complete; a Banach space whose norm induces an inner product (follows the parallelogram identity)

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and three-dimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used.

Functional analysis branch of mathematical analysis concerned with infinite-dimensional topological vector spaces, often spaces of functions

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations.

Applied harmonic analysis

Bass-guitar time signal of open-string A note (55 Hz) Bass Guitar Time Signal of open string A note (55 Hz).png
Bass-guitar time signal of open-string A note (55 Hz)
Fourier transform of bass-guitar time signal of open-string A note (55 Hz) Fourier Transform of bass guitar time signal.png
Fourier transform of bass-guitar time signal of open-string A note (55 Hz)

Many applications of harmonic analysis in science and engineering begin with the idea or hypothesis that a phenomenon or signal is composed of a sum of individual oscillatory components. Ocean tides and vibrating strings are common and simple examples. The theoretical approach is often to try to describe the system by a differential equation or system of equations to predict the essential features, including the amplitude, frequency, and phases of the oscillatory components. The specific equations depend on the field, but theories generally try to select equations that represent major principles that are applicable.

Tide The periodic change of sea levels caused by the gravitational and inertial effects of the Moon, the Sun and the rotation of the Earth

Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and the Sun, and the rotation of the Earth.

String (music) musical instrument part, made from metal or plastic

A string is the vibrating element that produces sound in string instruments such as the guitar, harp, piano, and members of the violin family. Strings are lengths of a flexible material that a musical instrument holds under tension so that they can vibrate freely, but controllably. Strings may be "plain", consisting only of a single material, like steel, nylon, or gut, or wound, having a "core" of one material and an overwinding of another. This is to make the string vibrate at the desired pitch, while maintaining a low profile and sufficient flexibility for playability.

Differential equation mathematical equation that contains derivatives of an unknown function

A differential equation is a mathematical equation that relates some function with its derivatives. In applications, the functions usually represent physical quantities, the derivatives represent their rates of change, and the equation defines a relationship between the two. Because such relations are extremely common, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

The experimental approach is usually to acquire data that accurately quantifies the phenomenon. For example, in a study of tides, the experimentalist would acquire samples of water depth as a function of time at closely enough spaced intervals to see each oscillation and over a long enough duration that multiple oscillatory periods are likely included. In a study on vibrating strings, it is common for the experimentalist to acquire a sound waveform sampled at a rate at least twice that of the highest frequency expected and for a duration many times the period of the lowest frequency expected.

Data collection process of gathering and measuring information

Data collection is the process of gathering and measuring information on targeted variables in an established system, which then enables one to answer relevant questions and evaluate outcomes. Data collection is a component of research in all fields of study including physical and social sciences, humanities, and business. While methods vary by discipline, the emphasis on ensuring accurate and honest collection remains the same. The goal for all data collection is to capture quality evidence that allows analysis to lead to the formulation of convincing and credible answers to the questions that have been posed.

For example, the top signal at the right is a sound waveform of a bass guitar playing an open string corresponding to an A note with a fundamental frequency of 55 Hz. The waveform appears oscillatory, but it is more complex than a simple sine wave, indicating the presence of additional waves. The different wave components contributing to the sound can be revealed by applying a mathematical analysis technique known as the Fourier transform, the result of which is shown in the lower figure. Note that there is a prominent peak at 55 Hz, but that there are other peaks at 110 Hz, 165 Hz, and at other frequencies corresponding to integer multiples of 55 Hz. In this case, 55 Hz is identified as the fundamental frequency of the string vibration, and the integer multiples are known as harmonics.

Abstract harmonic analysis

Lord Kelvin's harmonic analyser 1876, Hunterian Museum, Glasgow Lord Kelvin's harmonic analyser 1876, Hunterian Museum, Glasgow.jpg
Lord Kelvin's harmonic analyser 1876, Hunterian Museum, Glasgow

One of the most modern branches of harmonic analysis, having its roots in the mid-20th century, is analysis on topological groups. The core motivating ideas are the various Fourier transforms, which can be generalized to a transform of functions defined on Hausdorff locally compact topological groups.

The theory for abelian locally compact groups is called Pontryagin duality.

Harmonic analysis studies the properties of that duality and Fourier transform and attempts to extend those features to different settings, for instance, to the case of non-abelian Lie groups.

For general non-abelian locally compact groups, harmonic analysis is closely related to the theory of unitary group representations. For compact groups, the Peter–Weyl theorem explains how one may get harmonics by choosing one irreducible representation out of each equivalence class of representations. This choice of harmonics enjoys some of the useful properties of the classical Fourier transform in terms of carrying convolutions to pointwise products, or otherwise showing a certain understanding of the underlying group structure. See also: Non-commutative harmonic analysis.

If the group is neither abelian nor compact, no general satisfactory theory is currently known ("satisfactory" means at least as strong as the Plancherel theorem). However, many specific cases have been analyzed, for example SLn. In this case, representations in infinite dimensions play a crucial role.

Other branches

See also

Related Research Articles

Fourier analysis Branch of mathematics regarding periodic and continuous signals

In mathematics, Fourier analysis is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer.

Topological group Group that is a topological space with continuous group action

In mathematics, a topological group is a group G together with a topology on G such that the group's binary operation and the group's inverse function are continuous functions with respect to the topology. A topological group is a mathematical object with both an algebraic structure and a topological structure. Thus, one may perform algebraic operations, because of the group structure, and one may talk about continuous functions, because of the topology.

Wavelet function for integral Fourier-like transform

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases, and then decreases back to zero. It can typically be visualized as a "brief oscillation" like one recorded by a seismograph or heart monitor. Generally, wavelets are intentionally crafted to have specific properties that make them useful for signal processing. Using a "reverse, shift, multiply and integrate" technique called convolution, wavelets can be combined with known portions of a damaged signal to extract information from the unknown portions.

Fourier transform mathematical transform that expresses a mathematical function of time as a function of frequency

The Fourier transform (FT) decomposes a function of time into the frequencies that make it up, in a way similar to how a musical chord can be expressed as the frequencies of its constituent notes. The Fourier transform of a function of time is itself a complex-valued function of frequency, whose absolute value represents the amount of that frequency present in the original function, and whose complex argument is the phase offset of the basic sinusoid in that frequency. The Fourier transform is called the frequency domain representation of the original signal. The term Fourier transform refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of time. The Fourier transform is not limited to functions of time, but in order to have a unified language, the domain of the original function is commonly referred to as the time domain. For many functions of practical interest, one can define an operation that reverses this: the inverse Fourier transformation, also called Fourier synthesis, of a frequency domain representation combines the contributions of all the different frequencies to recover the original function of time. In image processing the notion of a time domain is replaced by that of a spatial domain where the intensity of a signal is identified by its spatial position rather than at any point in time.

Fourier may refer to:

Sine wave mathematical curve that describes a smooth repetitive oscillation; continuous wave

A sine wave or sinusoid is a mathematical curve that describes a smooth periodic oscillation. A sine wave is a continuous wave. It is named after the function sine, of which it is the graph. It occurs often in pure and applied mathematics, as well as physics, engineering, signal processing and many other fields. Its most basic form as a function of time (t) is:

Pontryagin duality theorem

In mathematics, specifically in harmonic analysis and the theory of topological groups, Pontryagin duality explains the general properties of the Fourier transform on locally compact abelian groups, such as , the circle, or finite cyclic groups. The Pontryagin duality theorem itself states that locally compact abelian groups identify naturally with their bidual.

Frequency domain signal representation

In electronics, control systems engineering, and statistics, the frequency domain refers to the analysis of mathematical functions or signals with respect to frequency, rather than time. Put simply, a time-domain graph shows how a signal changes over time, whereas a frequency-domain graph shows how much of the signal lies within each given frequency band over a range of frequencies. A frequency-domain representation can also include information on the phase shift that must be applied to each sinusoid in order to be able to recombine the frequency components to recover the original time signal.

In mathematics, the Plancherel theorem is a result in harmonic analysis, proven by Michel Plancherel in 1910. It states that the integral of a function's squared modulus is equal to the integral of the squared modulus of its frequency spectrum. That is, if is a function on the real line, and is its frequency spectrum, then

In mathematics, a positive-definite function is, depending on the context, either of two types of function.

In mathematics and mathematical physics, potential theory is the study of harmonic functions.

In mathematical analysis, more precisely in microlocal analysis, the wave front (set) WF(f) characterizes the singularities of a generalized function f, not only in space, but also with respect to its Fourier transform at each point. The term "wave front" was coined by Lars Hörmander around 1970.

In mathematics, a Schwartz–Bruhat function, named after Laurent Schwartz and François Bruhat, is a complex valued function on a locally compact abelian group, such as the adeles, that generalizes a Schwartz function on a real vector space. A tempered distribution is defined as a continuous linear functional on the space of Schwartz–Bruhat functions.

Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and the algebraic operations in terms of matrix addition and matrix multiplication. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation is matrix multiplication.

In mathematics, noncommutative harmonic analysis is the field in which results from Fourier analysis are extended to topological groups that are not commutative. Since locally compact abelian groups have a well-understood theory, Pontryagin duality, which includes the basic structures of Fourier series and Fourier transforms, the major business of non-commutative harmonic analysis is usually taken to be the extension of the theory to all groups G that are locally compact. The case of compact groups is understood, qualitatively and after the Peter–Weyl theorem from the 1920s, as being generally analogous to that of finite groups and their character theory.

In harmonic analysis, a field within mathematics, Littlewood–Paley theory is a theoretical framework used to extend certain results about L2 functions to Lp functions for 1 < p < ∞. It is typically used as a substitute for orthogonality arguments which only apply to Lp functions when p = 2. One implementation involves studying a function by decomposing it in terms of functions with localized frequencies, and using the Littlewood–Paley g-function to compare it with its Poisson integral. The 1-variable case was originated by J. E. Littlewood and Raymond Paley and developed further by Polish mathematicians A. Zygmund and J. Marcinkiewicz in the 1930s using complex function theory. E. M. Stein later extended the theory to higher dimensions using real variable techniques.

Ahmed I. Zayed is an Egyptian American mathematician. His research interestes include Sampling Theory, Wavelets, Medical Imaging, Fractional Fourier transform,Sinc Approximations, Boundary Value Problems, Special Functions and Orthogonal polynomials, Integral transforms.


  1. "harmonic". Online Etymology Dictionary .
  2. Computed with https://sourceforge.net/projects/amoreaccuratefouriertransform/.
  3. Terras, Audrey (2013). Harmonic Analysis on Symmetric Spaces-Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane (2nd ed.). New York, NY: Springer. p. 37. ISBN   978-1461479710 . Retrieved 12 December 2017.