Differential equations |
---|
Scope |
Classification |
Solution |
People |
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, [1] resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, [2] random growth models [3] or physical systems that are subjected to thermal fluctuations.
SDEs have a random differential that is in the most basic case random white noise calculated as the distributional derivative of a Brownian motion or more generally a semimartingale. However, other types of random behaviour are possible, such as jump processes like Lévy processes [4] or semimartingales with jumps.
Stochastic differential equations are in general neither differential equations nor random differential equations. Random differential equations are conjugate to stochastic differential equations. Stochastic differential equations can also be extended to differential manifolds. [5] [6] [7] [8]
Stochastic differential equations originated in the theory of Brownian motion, in the work of Albert Einstein and Marian Smoluchowski in 1905, although Louis Bachelier was the first person credited with modeling Brownian motion in 1900, giving a very early example of a stochastic differential equation now known as Bachelier model. Some of these early examples were linear stochastic differential equations, also called Langevin equations after French physicist Langevin, describing the motion of a harmonic oscillator subject to a random force. The mathematical theory of stochastic differential equations was developed in the 1940s through the groundbreaking work of Japanese mathematician Kiyosi Itô, who introduced the concept of stochastic integral and initiated the study of nonlinear stochastic differential equations. Another approach was later proposed by Russian physicist Stratonovich, leading to a calculus similar to ordinary calculus.
The most common form of SDEs in the literature is an ordinary differential equation with the right hand side perturbed by a term dependent on a white noise variable. In most cases, SDEs are understood as continuous time limit of the corresponding stochastic difference equations. This understanding of SDEs is ambiguous and must be complemented by a proper mathematical definition of the corresponding integral. [1] [3] Such a mathematical definition was first proposed by Kiyosi Itô in the 1940s, leading to what is known today as the Itô calculus. Another construction was later proposed by Russian physicist Stratonovich, leading to what is known as the Stratonovich integral. The Itô integral and Stratonovich integral are related, but different, objects and the choice between them depends on the application considered. The Itô calculus is based on the concept of non-anticipativeness or causality, which is natural in applications where the variable is time. The Stratonovich calculus, on the other hand, has rules which resemble ordinary calculus and has intrinsic geometric properties which render it more natural when dealing with geometric problems such as random motion on manifolds, although it is possible and in some cases preferable to model random motion on manifolds through Itô SDEs, [6] for example when trying to optimally approximate SDEs on submanifolds. [9]
An alternative view on SDEs is the stochastic flow of diffeomorphisms. This understanding is unambiguous and corresponds to the Stratonovich version of the continuous time limit of stochastic difference equations. Associated with SDEs is the Smoluchowski equation or the Fokker–Planck equation, an equation describing the time evolution of probability distribution functions. The generalization of the Fokker–Planck evolution to temporal evolution of differential forms is provided by the concept of stochastic evolution operator.
In physical science, there is an ambiguity in the usage of the term "Langevin SDEs". While Langevin SDEs can be of a more general form, this term typically refers to a narrow class of SDEs with gradient flow vector fields. This class of SDEs is particularly popular because it is a starting point of the Parisi–Sourlas stochastic quantization procedure, [10] leading to a N=2 supersymmetric model closely related to supersymmetric quantum mechanics. From the physical point of view, however, this class of SDEs is not very interesting because it never exhibits spontaneous breakdown of topological supersymmetry, i.e., (overdamped) Langevin SDEs are never chaotic.
Brownian motion or the Wiener process was discovered to be exceptionally complex mathematically. The Wiener process is almost surely nowhere differentiable; [1] [3] thus, it requires its own rules of calculus. There are two dominating versions of stochastic calculus, the Itô stochastic calculus and the Stratonovich stochastic calculus. Each of the two has advantages and disadvantages, and newcomers are often confused whether the one is more appropriate than the other in a given situation. Guidelines exist (e.g. Øksendal, 2003) [3] and conveniently, one can readily convert an Itô SDE to an equivalent Stratonovich SDE and back again. [1] [3] Still, one must be careful which calculus to use when the SDE is initially written down.
Numerical methods for solving stochastic differential equations [11] include the Euler–Maruyama method, Milstein method, Runge–Kutta method (SDE), Rosenbrock method, [12] and methods based on different representations of iterated stochastic integrals. [13] [14]
In physics, SDEs have wide applicability ranging from molecular dynamics to neurodynamics and to the dynamics of astrophysical objects. More specifically, SDEs describe all dynamical systems, in which quantum effects are either unimportant or can be taken into account as perturbations. SDEs can be viewed as a generalization of the dynamical systems theory to models with noise. This is an important generalization because real systems cannot be completely isolated from their environments and for this reason always experience external stochastic influence.
There are standard techniques for transforming higher-order equations into several coupled first-order equations by introducing new unknowns. Therefore, the following is the most general class of SDEs:
where is the position in the system in its phase (or state) space, , assumed to be a differentiable manifold, the is a flow vector field representing deterministic law of evolution, and is a set of vector fields that define the coupling of the system to Gaussian white noise, . If is a linear space and are constants, the system is said to be subject to additive noise, otherwise it is said to be subject to multiplicative noise. This term is somewhat misleading as it has come to mean the general case even though it appears to imply the limited case in which .
For a fixed configuration of noise, SDE has a unique solution differentiable with respect to the initial condition. [15] Nontriviality of stochastic case shows up when one tries to average various objects of interest over noise configurations. In this sense, an SDE is not a uniquely defined entity when noise is multiplicative and when the SDE is understood as a continuous time limit of a stochastic difference equation. In this case, SDE must be complemented by what is known as "interpretations of SDE" such as Itô or a Stratonovich interpretations of SDEs. Nevertheless, when SDE is viewed as a continuous-time stochastic flow of diffeomorphisms, it is a uniquely defined mathematical object that corresponds to Stratonovich approach to a continuous time limit of a stochastic difference equation.
In physics, the main method of solution is to find the probability distribution function as a function of time using the equivalent Fokker–Planck equation (FPE). The Fokker–Planck equation is a deterministic partial differential equation. It tells how the probability distribution function evolves in time similarly to how the Schrödinger equation gives the time evolution of the quantum wave function or the diffusion equation gives the time evolution of chemical concentration. Alternatively, numerical solutions can be obtained by Monte Carlo simulation. Other techniques include the path integration that draws on the analogy between statistical physics and quantum mechanics (for example, the Fokker-Planck equation can be transformed into the Schrödinger equation by rescaling a few variables) or by writing down ordinary differential equations for the statistical moments of the probability distribution function. [ citation needed ]
The notation used in probability theory (and in many applications of probability theory, for instance in signal processing with the filtering problem and in mathematical finance) is slightly different. It is also the notation used in publications on numerical methods for solving stochastic differential equations. This notation makes the exotic nature of the random function of time in the physics formulation more explicit. In strict mathematical terms, cannot be chosen as an ordinary function, but only as a generalized function. The mathematical formulation treats this complication with less ambiguity than the physics formulation.
A typical equation is of the form
where denotes a Wiener process (standard Brownian motion). This equation should be interpreted as an informal way of expressing the corresponding integral equation
The equation above characterizes the behavior of the continuous time stochastic process Xt as the sum of an ordinary Lebesgue integral and an Itô integral. A heuristic (but very helpful) interpretation of the stochastic differential equation is that in a small time interval of length δ the stochastic process Xt changes its value by an amount that is normally distributed with expectation μ(Xt, t) δ and variance σ(Xt, t)2 δ and is independent of the past behavior of the process. This is so because the increments of a Wiener process are independent and normally distributed. The function μ is referred to as the drift coefficient, while σ is called the diffusion coefficient. The stochastic process Xt is called a diffusion process, and satisfies the Markov property. [1]
The formal interpretation of an SDE is given in terms of what constitutes a solution to the SDE. There are two main definitions of a solution to an SDE, a strong solution and a weak solution [1] Both require the existence of a process Xt that solves the integral equation version of the SDE. The difference between the two lies in the underlying probability space (). A weak solution consists of a probability space and a process that satisfies the integral equation, while a strong solution is a process that satisfies the equation and is defined on a given probability space. The Yamada–Watanabe theorem makes a connection between the two.
An important example is the equation for geometric Brownian motion
which is the equation for the dynamics of the price of a stock in the Black–Scholes options pricing model [2] of financial mathematics.
Generalizing the geometric Brownian motion, it is also possible to define SDEs admitting strong solutions and whose distribution is a convex combination of densities coming from different geometric Brownian motions or Black Scholes models, obtaining a single SDE whose solutions is distributed as a mixture dynamics of lognormal distributions of different Black Scholes models. [2] [16] [17] [18] This leads to models that can deal with the volatility smile in financial mathematics.
The simpler SDE called arithmetic Brownian motion [3]
was used by Louis Bachelier as the first model for stock prices in 1900, known today as Bachelier model.
There are also more general stochastic differential equations where the coefficients μ and σ depend not only on the present value of the process Xt, but also on previous values of the process and possibly on present or previous values of other processes too. In that case the solution process, X, is not a Markov process, and it is called an Itô process and not a diffusion process. When the coefficients depends only on present and past values of X, the defining equation is called a stochastic delay differential equation.
A generalization of stochastic differential equations with the Fisk-Stratonovich integral to semimartingales with jumps are the SDEs of Marcus type. The Marcus integral is an extension of McShane's stochastic calculus. [19]
An innovative application in stochastic finance derives from the usage of the equation for Ornstein–Uhlenbeck process
which is the equation for the dynamics of the return of the price of a stock under the hypothesis that returns display a Log-normal distribution. Under this hypothesis, the methodologies developed by Marcello Minenna determines prediction interval able to identify abnormal return that could hide market abuse phenomena. [20] [21]
More generally one can extend the theory of stochastic calculus onto differential manifolds and for this purpose one uses the Fisk-Stratonovich integral. Consider a manifold , some finite-dimensional vector space , a filtered probability space with satisfying the usual conditions and let be the one-point compactification and be -measurable. A stochastic differential equation on written
is a pair , such that
For each the map is linear and for each .
A solution to the SDE on with initial condition is a continuous -adapted -valued process up to life time , s.t. for each test function the process is a real-valued semimartingale and for each stopping time with the equation
holds -almost surely, where is the differential at . It is a maximal solution if the life time is maximal, i.e.,
-almost surely. It follows from the fact that for each test function is a semimartingale, that is a semimartingale on . Given a maximal solution we can extend the time of onto full and after a continuation of on we get
up to indistinguishable processes. [22] Although Stratonovich SDEs are the natural choice for SDEs on manifolds, given that they satisfy the chain rule and that their drift and diffusion coefficients behave as vector fields under changes of coordinates, there are cases where Ito calculus on manifolds is preferable. A theory of Ito calculus on manifolds was first developed by Laurent Schwartz through the concept of Schwartz morphism, [6] see also the related 2-jet interpretation of Ito SDEs on manifolds based on the jet-bundle. [8] This interpretation is helpful when trying to optimally approximate the solution of an SDE given on a large space with the solutions of an SDE given on a submanifold of that space, [9] in that a Stratonovich based projection does not result to be optimal. This has been applied to the filtering problem, leading to optimal projection filters. [9]
Usually the solution of an SDE requires a probabilistic setting, as the integral implicit in the solution is a stochastic integral. If it were possible to deal with the differential equation path by path, one would not need to define a stochastic integral and one could develop a theory independently of probability theory. This points to considering the SDE
as a single deterministic differential equation for every , where is the sample space in the given probability space (). However, a direct path-wise interpretation of the SDE is not possible, as the Brownian motion paths have unbounded variation and are nowhere differentiable with probability one, so that there is no naive way to give meaning to terms like , precluding also a naive path-wise definition of the stochastic integral as an integral against every single . However, motivated by the Wong-Zakai result [23] for limits of solutions of SDEs with regular noise and using rough paths theory, while adding a chosen definition of iterated integrals of Brownian motion, it is possible to define a deterministic rough integral for every single that coincides for example with the Ito integral with probability one for a particular choice of the iterated Brownian integral. [23] Other definitions of the iterated integral lead to deterministic pathwise equivalents of different stochastic integrals, like the Stratonovich integral. This has been used for example in financial mathematics to price options without probability. [24]
As with deterministic ordinary and partial differential equations, it is important to know whether a given SDE has a solution, and whether or not it is unique. The following is a typical existence and uniqueness theorem for Itô SDEs taking values in n-dimensional Euclidean space Rn and driven by an m-dimensional Brownian motion B; the proof may be found in Øksendal (2003, §5.2). [3]
Let T > 0, and let
be measurable functions for which there exist constants C and D such that
for all t ∈ [0, T] and all x and y ∈ Rn, where
Let Z be a random variable that is independent of the σ-algebra generated by Bs, s ≥ 0, and with finite second moment:
Then the stochastic differential equation/initial value problem
has a P-almost surely unique t-continuous solution (t, ω) ↦ Xt(ω) such that X is adapted to the filtration FtZ generated by Z and Bs, s ≤ t, and
The stochastic differential equation above is only a special case of a more general form
where
More generally one can also look at stochastic differential equations on manifolds.
Whether the solution of this equation explodes depends on the choice of . Suppose satisfies some local Lipschitz condition, i.e., for and some compact set and some constant the condition
where is the Euclidean norm. This condition guarantees the existence and uniqueness of a so-called maximal solution.
Suppose is continuous and satisfies the above local Lipschitz condition and let be some initial condition, meaning it is a measurable function with respect to the initial σ-algebra. Let be a predictable stopping time with almost surely. A -valued semimartingale is called a maximal solution of
with life time if
is also a so-called explosion time.
Explicitly solvable SDEs include: [11]
where
for a given differentiable function is equivalent to the Stratonovich SDE
which has a general solution
where
for a given differentiable function is equivalent to the Stratonovich SDE
which is reducible to
where where is defined as before. Its general solution is
In supersymmetric theory of SDEs, stochastic dynamics is defined via stochastic evolution operator acting on the differential forms on the phase space of the model. In this exact formulation of stochastic dynamics, all SDEs possess topological supersymmetry which represents the preservation of the continuity of the phase space by continuous time flow. The spontaneous breakdown of this supersymmetry is the mathematical essence of the ubiquitous dynamical phenomenon known across disciplines as chaos, turbulence, self-organized criticality etc. and the Goldstone theorem explains the associated long-range dynamical behavior, i.e., the butterfly effect, 1/f and crackling noises, and scale-free statistics of earthquakes, neuroavalanches, solar flares etc.
In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or and the divergence theorem is the case of a volume in Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.
In mathematics, Itô's lemma or Itô's formula is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment. The lemma is widely employed in mathematical finance, and its best known application is in the derivation of the Black–Scholes equation for option values.
Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created and started by the Japanese mathematician Kiyosi Itô during World War II.
In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.
Itô calculus, named after Kiyosi Itô, extends the methods of calculus to stochastic processes such as Brownian motion. It has important applications in mathematical finance and stochastic differential equations.
In stochastic processes, the Stratonovich integral or Fisk–Stratonovich integral is a stochastic integral, the most common alternative to the Itô integral. Although the Itô integral is the usual choice in applied mathematics, the Stratonovich integral is frequently used in physics.
In mathematics, the Clark–Ocone theorem is a theorem of stochastic analysis. It expresses the value of some function F defined on the classical Wiener space of continuous paths starting at the origin as the sum of its mean value and an Itô integral with respect to that path. It is named after the contributions of mathematicians J.M.C. Clark (1970), Daniel Ocone (1984) and U.G. Haussmann (1978).
In probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined.
In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.
In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process is a Fourier multiplier operator that encodes a great deal of information about the process.
In mathematics, some boundary value problems can be solved using the methods of stochastic analysis. Perhaps the most celebrated example is Shizuo Kakutani's 1944 solution of the Dirichlet problem for the Laplace operator using Brownian motion. However, it turns out that for a large class of semi-elliptic second-order partial differential equations the associated Dirichlet boundary value problem can be solved using an Itō process that solves an associated stochastic differential equation.
In the theory of stochastic processes, filtering describes the problem of determining the state of a system from an incomplete and potentially noisy set of observations. While originally motivated by problems in engineering, filtering found applications in many fields from signal processing to finance.
In mathematics, the Skorokhod integral, also named Hitsuda–Skorokhod integral, often denoted , is an operator of great importance in the theory of stochastic processes. It is named after the Ukrainian mathematician Anatoliy Skorokhod and Japanese mathematician Masuyuki Hitsuda. Part of its importance is that it unifies several concepts:
In stochastic analysis, a rough path is a generalization of the notion of smooth path allowing to construct a robust solution theory for controlled differential equations driven by classically irregular signals, for example a Wiener process. The theory was developed in the 1990s by Terry Lyons. Several accounts of the theory are available.
Quantum stochastic calculus is a generalization of stochastic calculus to noncommuting variables. The tools provided by quantum stochastic calculus are of great use for modeling the random evolution of systems undergoing measurement, as in quantum trajectories. Just as the Lindblad master equation provides a quantum generalization to the Fokker–Planck equation, quantum stochastic calculus allows for the derivation of quantum stochastic differential equations (QSDE) that are analogous to classical Langevin equations.
The Engelbert–Schmidt zero–one law is a theorem that gives a mathematical criterion for an event associated with a continuous, non-decreasing additive functional of Brownian motion to have probability either 0 or 1, without the possibility of an intermediate value. This zero-one law is used in the study of questions of finiteness and asymptotic behavior for stochastic differential equations. This 0-1 law, published in 1981, is named after Hans-Jürgen Engelbert and the probabilist Wolfgang Schmidt.
In mathematics, stochastic analysis on manifolds or stochastic differential geometry is the study of stochastic analysis over smooth manifolds. It is therefore a synthesis of stochastic analysis and of differential geometry.
In stochastic calculus, the Ogawa integral, also called the non-causal stochastic integral, is a stochastic integral for non-adapted processes as integrands. The corresponding calculus is called non-causal calculus which distinguishes it from the anticipating calculus of the Skorokhod integral. The term causality refers to the adaptation to the natural filtration of the integrator.
The Yamada–Watanabe theorem is a result from probability theory saying that for a large class of stochastic differential equations a weak solution with pathwise uniqueness implies a strong solution and uniqueness in distribution. In its original form, the theorem was stated for -dimensional Itô equations and was proven by Toshio Yamada and Shinzō Watanabe in 1971. Since then, many generalizations appeared particularly one for general semimartingales by Jean Jacod from 1980.