Langevin dynamics

Last updated

In physics, Langevin dynamics is an approach to the mathematical modeling of the dynamics of molecular systems using the Langevin equation. It was originally developed by French physicist Paul Langevin. The approach is characterized by the use of simplified models while accounting for omitted degrees of freedom by the use of stochastic differential equations. Langevin dynamics simulations are a kind of Monte Carlo simulation. [1]

Contents

Overview

A real world molecular system is unlikely to be present in vacuum. Jostling of solvent or air molecules causes friction, and the occasional high velocity collision will perturb the system. Langevin dynamics attempts to extend molecular dynamics to allow for these effects. Also, Langevin dynamics allows temperature to be controlled as with a thermostat, thus approximating the canonical ensemble.

Langevin dynamics mimics the viscous aspect of a solvent. It does not fully model an implicit solvent; specifically, the model does not account for the electrostatic screening and also not for the hydrophobic effect. For denser solvents, hydrodynamic interactions are not captured via Langevin dynamics.

For a system of particles with masses , with coordinates that constitute a time-dependent random variable, the resulting Langevin equation is [2] [3] where is the particle interaction potential; is the gradient operator such that is the force calculated from the particle interaction potentials; the dot is a time derivative such that is the velocity and is the acceleration; is the damping constant (units of reciprocal time), also known as the collision frequency; is the temperature, is the Boltzmann constant; and is a delta-correlated stationary Gaussian process with zero-mean, satisfying

Here, is the Dirac delta.

If the main objective is to control temperature, care should be exercised to use a small damping constant . As grows, it spans from the inertial all the way to the diffusive (Brownian) regime. The Langevin dynamics limit of non-inertia is commonly described as Brownian dynamics. Brownian dynamics can be considered as overdamped Langevin dynamics, i.e. Langevin dynamics where no average acceleration takes place.

The Langevin equation can be reformulated as a Fokker–Planck equation that governs the probability distribution of the random variable X. [4]

The Langevin equation can be generalized to rotational dynamics of molecules, Brownian particles, etc. A standard (according to NIST [5] ) way to do it is to leverage a quaternion-based description of the stochastic rotational motion [6] [7] .

See also

Related Research Articles

In statistical mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force with that of the total potential energy of the system. Mathematically, the theorem states that where T is the total kinetic energy of the N particles, Fk represents the force on the kth particle, which is located at position rk, and angle brackets represent the average over time of the enclosed quantity. The word virial for the right-hand side of the equation derives from vis, the Latin word for "force" or "energy", and was given its technical definition by Rudolf Clausius in 1870.

In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons. Due to the larger relative mass of a nucleus compared to an electron, the coordinates of the nuclei in a system are approximated as fixed, while the coordinates of the electrons are dynamic. The approach is named after Max Born and his 23-year-old graduate student J. Robert Oppenheimer, the latter of whom proposed it in 1927 during a period of intense ferment in the development of quantum mechanics.

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

<span class="mw-page-title-main">Polymer physics</span>

Polymer physics is the field of physics that studies polymers, their fluctuations, mechanical properties, as well as the kinetics of reactions involving degradation of polymers and polymerisation of monomers.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

<span class="mw-page-title-main">Boltzmann equation</span> Equation of statistical mechanics

The Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium; it was devised by Ludwig Boltzmann in 1872. The classic example of such a system is a fluid with temperature gradients in space causing heat to flow from hotter regions to colder ones, by the random but biased transport of the particles making up that fluid. In the modern literature the term Boltzmann equation is often used in a more general sense, referring to any kinetic equation that describes the change of a macroscopic quantity in a thermodynamic system, such as energy, charge or particle number.

The diabatic representation as a mathematical tool for theoretical calculations of atomic collisions and of molecular interactions.

In physics, Brownian dynamics is a mathematical approach for describing the dynamics of molecular systems in the diffusive regime. It is a simplified version of Langevin dynamics and corresponds to the limit where no average acceleration takes place. This approximation is also known as overdamped Langevin dynamics or as Langevin dynamics without inertia.

<span class="mw-page-title-main">Eddy diffusion</span> Mixing of fluids due to eddy currents

In fluid dynamics, eddy diffusion, eddy dispersion, or turbulent diffusion is a process by which fluid substances mix together due to eddy motion. These eddies can vary widely in size, from subtropical ocean gyres down to the small Kolmogorov microscales, and occur as a result of turbulence. The theory of eddy diffusion was first developed by Sir Geoffrey Ingram Taylor.

Stokesian dynamics is a solution technique for the Langevin equation, which is the relevant form of Newton's 2nd law for a Brownian particle. The method treats the suspended particles in a discrete sense while the continuum approximation remains valid for the surrounding fluid, i.e., the suspended particles are generally assumed to be significantly larger than the molecules of the solvent. The particles then interact through hydrodynamic forces transmitted via the continuum fluid, and when the particle Reynolds number is small, these forces are determined through the linear Stokes equations. In addition, the method can also resolve non-hydrodynamic forces, such as Brownian forces, arising from the fluctuating motion of the fluid, and interparticle or external forces. Stokesian Dynamics can thus be applied to a variety of problems, including sedimentation, diffusion and rheology, and it aims to provide the same level of understanding for multiphase particulate systems as molecular dynamics does for statistical properties of matter. For rigid particles of radius suspended in an incompressible Newtonian fluid of viscosity and density , the motion of the fluid is governed by the Navier–Stokes equations, while the motion of the particles is described by the coupled equation of motion:

In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of a Riemannian or pseudo-Riemannian manifold.

The term file dynamics is the motion of many particles in a narrow channel.

In statistical mechanics, the mean squared displacement is a measure of the deviation of the position of a particle with respect to a reference position over time. It is the most common measure of the spatial extent of random motion, and can be thought of as measuring the portion of the system "explored" by the random walker. In the realm of biophysics and environmental engineering, the Mean Squared Displacement is measured over time to determine if a particle is spreading slowly due to diffusion, or if an advective force is also contributing. Another relevant concept, the variance-related diameter, is also used in studying the transportation and mixing phenomena in the realm of environmental engineering. It prominently appears in the Debye–Waller factor and in the Langevin equation.

In computational fluid dynamics, the Stochastic Eulerian Lagrangian Method (SELM) is an approach to capture essential features of fluid-structure interactions subject to thermal fluctuations while introducing approximations which facilitate analysis and the development of tractable numerical methods. SELM is a hybrid approach utilizing an Eulerian description for the continuum hydrodynamic fields and a Lagrangian description for elastic structures. Thermal fluctuations are introduced through stochastic driving fields. Approaches also are introduced for the stochastic fields of the SPDEs to obtain numerical methods taking into account the numerical discretization artifacts to maintain statistical principles, such as fluctuation-dissipation balance and other properties in statistical mechanics.

Surface hopping is a mixed quantum-classical technique that incorporates quantum mechanical effects into molecular dynamics simulations. Traditional molecular dynamics assume the Born-Oppenheimer approximation, where the lighter electrons adjust instantaneously to the motion of the nuclei. Though the Born-Oppenheimer approximation is applicable to a wide range of problems, there are several applications, such as photoexcited dynamics, electron transfer, and surface chemistry where this approximation falls apart. Surface hopping partially incorporates the non-adiabatic effects by including excited adiabatic surfaces in the calculations, and allowing for 'hops' between these surfaces, subject to certain criteria.

Hybrid stochastic simulations are a sub-class of stochastic simulations. These simulations combine existing stochastic simulations with other stochastic simulations or algorithms. Generally they are used for physics and physics-related research. The goal of a hybrid stochastic simulation varies based on context, however they typically aim to either improve accuracy or reduce computational complexity. The first hybrid stochastic simulation was developed in 1985.

Single-particle trajectories (SPTs) consist of a collection of successive discrete points causal in time. These trajectories are acquired from images in experimental data. In the context of cell biology, the trajectories are obtained by the transient activation by a laser of small dyes attached to a moving molecule.

An active Brownian particle (ABP) is a model of self-propelled motion in a dissipative environment. It is a nonequilibrium generalization of a Brownian particle.

References

  1. Namiki, Mikio (2008-10-04). Stochastic Quantization. Springer Science & Business Media. p. 176. ISBN   978-3-540-47217-9.
  2. Schlick, Tamar (2002). Molecular Modeling and Simulation. Springer. p. 480. ISBN   0-387-95404-X.
  3. Pastor, R.W. (1994). "Techniques and Applications of Langevin Dynamics Simulations". In Luckhurst, G.R.; Veracini, C.A. (eds.). The Molecular Dynamics of Liquid Crystals. NATO ASI Series. Vol. 431. Springer, Dordrecht. pp. 85–138. doi:10.1007/978-94-011-1168-3_5. ISBN   978-94-010-4509-4.
  4. Shang, Xiaocheng; Kröger, Martin (2020-01-01). "Time Correlation Functions of Equilibrium and Nonequilibrium Langevin Dynamics: Derivations and Numerics Using Random Numbers". SIAM Review. 62 (4): 901–935. arXiv: 1810.12650 . doi: 10.1137/19M1255471 . ISSN   0036-1445.
  5. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860163
  6. Omelyan, Igor P. (1998-01-01). "On the numerical integration of motion for rigid polyatomics: The modified quaternion approach". Computers in Physics. 12 (1): 97–103. doi:10.1063/1.168642. ISSN   0894-1866.
  7. Groot, Robert D.; Warren, Patrick B. (1997-09-15). "Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation". The Journal of Chemical Physics. 107 (11): 4423–4435. doi:10.1063/1.474784. ISSN   0021-9606.