Brownian dynamics

Last updated

In physics, Brownian dynamics is a mathematical approach for describing the dynamics of molecular systems in the diffusive regime. It is a simplified version of Langevin dynamics and corresponds to the limit where no average acceleration takes place. This approximation is also known as overdamped Langevin dynamics or as Langevin dynamics without inertia.

Contents

Definition

In Brownian dynamics, the following equation of motion is used to describe the dynamics of a stochastic system with coordinates : [1] [2] [3]

where:

Derivation

In Langevin dynamics, the equation of motion using the same notation as above is as follows: [1] [2] [3]

where:

The above equation may be rewritten as

In Brownian dynamics, the inertial force term is so much smaller than the other three that it is considered negligible. In this case, the equation is approximately [1]

For spherical particles of radius in the limit of low Reynolds number, we can use the Stokes–Einstein relation. In this case, , and the equation reads:

For example, when the magnitude of the friction tensor increases, the damping effect of the viscous force becomes dominant relative to the inertial force. Consequently, the system transitions from the inertial to the diffusive (Brownian) regime. For this reason, Brownian dynamics are also known as overdamped Langevin dynamics or Langevin dynamics without inertia.

Algorithms

In 1978, Ermack and McCammon suggested an algorithm for efficiently computing Brownian dynamics with hydrodynamic interactions. [2] Hydrodynamic interactions occur when the particles interact indirectly by generating and reacting to local velocities in the solvent. For a system of three-dimensional particle diffusing subject to a force vector F(X), the derived Brownian dynamics scheme becomes: [1]

where is a diffusion matrix specifying hydrodynamic interactions in non-diagonal entries and is a Gaussian noise vector with zero mean and a standard deviation of in each vector entry.

See also

Related Research Articles

<span class="mw-page-title-main">Brownian motion</span> Random motion of particles suspended in a fluid

Brownian motion is the random motion of particles suspended in a medium.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.

In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external field. The Froude number is based on the speed–length ratio which he defined as:

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

<span class="mw-page-title-main">Open-channel flow</span> Type of liquid flow within a conduit

In fluid mechanics and hydraulics, open-channel flow is a type of liquid flow within a conduit with a free surface, known as a channel. The other type of flow within a conduit is pipe flow. These two types of flow are similar in many ways but differ in one important respect: open-channel flow has a free surface, whereas pipe flow does not, resulting in flow dominated by gravity but not hydraulic pressure.

In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is

In physics, Langevin dynamics is an approach to the mathematical modeling of the dynamics of molecular systems. It was originally developed by French physicist Paul Langevin. The approach is characterized by the use of simplified models while accounting for omitted degrees of freedom by the use of stochastic differential equations. Langevin dynamics simulations are a kind of Monte Carlo simulation.

Stokesian dynamics is a solution technique for the Langevin equation, which is the relevant form of Newton's 2nd law for a Brownian particle. The method treats the suspended particles in a discrete sense while the continuum approximation remains valid for the surrounding fluid, i.e., the suspended particles are generally assumed to be significantly larger than the molecules of the solvent. The particles then interact through hydrodynamic forces transmitted via the continuum fluid, and when the particle Reynolds number is small, these forces are determined through the linear Stokes equations. In addition, the method can also resolve non-hydrodynamic forces, such as Brownian forces, arising from the fluctuating motion of the fluid, and interparticle or external forces. Stokesian Dynamics can thus be applied to a variety of problems, including sedimentation, diffusion and rheology, and it aims to provide the same level of understanding for multiphase particulate systems as molecular dynamics does for statistical properties of matter. For rigid particles of radius suspended in an incompressible Newtonian fluid of viscosity and density , the motion of the fluid is governed by the Navier–Stokes equations, while the motion of the particles is described by the coupled equation of motion:

The convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.

In fluid dynamics, the Basset–Boussinesq–Oseen equation describes the motion of – and forces on – a small particle in unsteady flow at low Reynolds numbers. The equation is named after Joseph Valentin Boussinesq, Alfred Barnard Basset and Carl Wilhelm Oseen.

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.

<span class="mw-page-title-main">Mass-spring-damper model</span> Concept in physics

The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity. Packages such as MATLAB may be used to run simulations of such models. As well as engineering simulation, these systems have applications in computer graphics and computer animation.

In fluid dynamics, Beltrami flows are flows in which the vorticity vector and the velocity vector are parallel to each other. In other words, Beltrami flow is a flow in which the Lamb vector is zero. It is named after the Italian mathematician Eugenio Beltrami due to his derivation of the Beltrami vector field, while initial developments in fluid dynamics were done by the Russian scientist Ippolit S. Gromeka in 1881.

Single-particle trajectories (SPTs) consist of a collection of successive discrete points causal in time. These trajectories are acquired from images in experimental data. In the context of cell biology, the trajectories are obtained by the transient activation by a laser of small dyes attached to a moving molecule.

In physics and mathematics, the Klein–Kramers equation or sometimes referred as Kramers–Chandrasekhar equation is a partial differential equation that describes the probability density function f of a Brownian particle in phase space (r, p). It is a special case of the Fokker–Planck equation.

<span class="mw-page-title-main">Levitated optomechanics</span> Field of physics relating to optics and quantum mechanics)

Levitated optomechanics is a field of mesoscopic physics which deals with the mechanical motion of mesoscopic particles which are optically or electrically or magnetically levitated. Through the use of levitation, it is possible to decouple the particle's mechanical motion exceptionally well from the environment. This in turn enables the study of high-mass quantum physics, out-of-equilibrium- and nano-thermodynamics and provides the basis for precise sensing applications.

References

  1. 1 2 3 4 Schlick, Tamar (2002). Molecular Modeling and Simulation. Interdisciplinary Applied Mathematics. Vol. 21. Springer. pp. 480–494. doi:10.1007/978-0-387-22464-0. ISBN   978-0-387-22464-0.
  2. 1 2 3 Ermack, Donald L; McCammon, J. A. (1978). "Brownian dynamics with hydrodynamic interactions". J. Chem. Phys. 69 (4): 1352–1360. Bibcode:1978JChPh..69.1352E. doi: 10.1063/1.436761 .
  3. 1 2 Loncharich, R J; Brooks, B R; Pastor, R W (1992). "Langevin Dynamics of Peptides: The Frictional Dependence of lsomerization Rates of N-Acetylalanyl-WMethylamid". Biopolymers. 32 (5): 523–35. doi:10.1002/bip.360320508. PMID   1515543. S2CID   23457332.