White noise

Last updated
The waveform of a Gaussian white noise signal plotted on a graph White noise.svg
The waveform of a Gaussian white noise signal plotted on a graph

In signal processing, white noise is a random signal having equal intensity at different frequencies, giving it a constant power spectral density. [1] The term is used with this or similar meanings in many scientific and technical disciplines, including physics, acoustical engineering, telecommunications, and statistical forecasting. White noise refers to a statistical model for signals and signal sources, not to any specific signal. White noise draws its name from white light, [2] although light that appears white generally does not have a flat power spectral density over the visible band.

Contents

An image of salt-and-pepper noise White-noise-mv255-240x180.png
An image of salt-and-pepper noise

In discrete time, white noise is a discrete signal whose samples are regarded as a sequence of serially uncorrelated random variables with zero mean and finite variance; a single realization of white noise is a random shock. In some contexts, it is also required that the samples be independent and have identical probability distribution (in other words independent and identically distributed random variables are the simplest representation of white noise). [3] In particular, if each sample has a normal distribution with zero mean, the signal is said to be additive white Gaussian noise. [4]

The samples of a white noise signal may be sequential in time, or arranged along one or more spatial dimensions. In digital image processing, the pixels of a white noise image are typically arranged in a rectangular grid, and are assumed to be independent random variables with uniform probability distribution over some interval. The concept can be defined also for signals spread over more complicated domains, such as a sphere or a torus.

The sound of white noise

An infinite-bandwidth white noise signal is a purely theoretical construction. The bandwidth of white noise is limited in practice by the mechanism of noise generation, by the transmission medium and by finite observation capabilities. Thus, random signals are considered white noise if they are observed to have a flat spectrum over the range of frequencies that are relevant to the context. For an audio signal, the relevant range is the band of audible sound frequencies (between 20 and 20,000 Hz). Such a signal is heard by the human ear as a hissing sound, resembling the /h/ sound in a sustained aspiration. On the other hand, the sh sound /ʃ/ in ash is a colored noise because it has a formant structure. In music and acoustics, the term white noise may be used for any signal that has a similar hissing sound.

In the context of phylogenetically based statistical methods, the term white noise can refer to a lack of phylogenetic pattern in comparative data. [5] In nontechnical contexts, it is sometimes used to mean "random talk without meaningful contents". [6] [7]

Statistical properties

Spectrogram of pink noise (left) and white noise (right), shown with linear frequency axis (vertical) versus time axis (horizontal) Noise.jpg
Spectrogram of pink noise (left) and white noise (right), shown with linear frequency axis (vertical) versus time axis (horizontal)

Any distribution of values is possible (although it must have zero DC component). Even a binary signal which can only take on the values 1 or -1 will be white if the sequence is statistically uncorrelated. Noise having a continuous distribution, such as a normal distribution, can of course be white.

It is often incorrectly assumed that Gaussian noise (i.e., noise with a Gaussian amplitude distribution see normal distribution) necessarily refers to white noise, yet neither property implies the other. Gaussianity refers to the probability distribution with respect to the value, in this context the probability of the signal falling within any particular range of amplitudes, while the term 'white' refers to the way the signal power is distributed (i.e., independently) over time or among frequencies.

One form of white noise is the generalized mean-square derivative of the Wiener process or Brownian motion.

A generalization to random elements on infinite dimensional spaces, such as random fields, is the white noise measure.

Practical applications

Music

White noise is commonly used in the production of electronic music, usually either directly or as an input for a filter to create other types of noise signal. It is used extensively in audio synthesis, typically to recreate percussive instruments such as cymbals or snare drums which have high noise content in their frequency domain. [8] A simple example of white noise is a nonexistent radio station (static).

Electronics engineering

White noise is also used to obtain the impulse response of an electrical circuit, in particular of amplifiers and other audio equipment. It is not used for testing loudspeakers as its spectrum contains too great an amount of high-frequency content. Pink noise, which differs from white noise in that it has equal energy in each octave, is used for testing transducers such as loudspeakers and microphones.

Computing

White noise is used as the basis of some random number generators. For example, Random.org uses a system of atmospheric antennas to generate random digit patterns from sources that can be well-modeled by white noise. [9]

Tinnitus treatment

White noise is a common synthetic noise source used for sound masking by a tinnitus masker. [10] White noise machines and other white noise sources are sold as privacy enhancers and sleep aids (see music and sleep) and to mask tinnitus. [11] The Marpac Sleep-Mate was the first domestic use white noise machine built in 1962 by traveling salesman Jim Buckwalter. [12] Alternatively, the use of an AM radio tuned to unused frequencies ("static") is a simpler and more cost-effective source of white noise. [13] However, white noise generated from a common commercial radio receiver tuned to an unused frequency is extremely vulnerable to being contaminated with spurious signals, such as adjacent radio stations, harmonics from non-adjacent radio stations, electrical equipment in the vicinity of the receiving antenna causing interference, or even atmospheric events such as solar flares and especially lightning.

Work environment

The effects of white noise upon cognitive function are mixed. Recently, a small study found that white noise background stimulation improves cognitive functioning among secondary students with attention deficit hyperactivity disorder (ADHD), while decreasing performance of non-ADHD students. [14] [15] Other work indicates it is effective in improving the mood and performance of workers by masking background office noise, [16] but decreases cognitive performance in complex card sorting tasks. [17]

Similarly, an experiment was carried out on sixty-six healthy participants to observe the benefits of using white noise in a learning environment. The experiment involved the participants identifying different images whilst having different sounds in the background. Overall the experiment showed that white noise does in fact have benefits in relation to learning. The experiments showed that white noise improved the participants' learning abilities and their recognition memory slightly. [18]

Mathematical definitions

White noise vector

A random vector (that is, a random variable with values in Rn) is said to be a white noise vector or white random vector if its components each have a probability distribution with zero mean and finite variance,[ clarification needed ] and are statistically independent: that is, their joint probability distribution must be the product of the distributions of the individual components. [19]

A necessary (but, in general, not sufficient) condition for statistical independence of two variables is that they be statistically uncorrelated; that is, their covariance is zero. Therefore, the covariance matrix R of the components of a white noise vector w with n elements must be an n by n diagonal matrix, where each diagonal element Rii is the variance of component wi; and the correlation matrix must be the n by n identity matrix.

If, in addition to being independent, every variable in w also has a normal distribution with zero mean and the same variance , w is said to be a Gaussian white noise vector. In that case, the joint distribution of w is a multivariate normal distribution; the independence between the variables then implies that the distribution has spherical symmetry in n-dimensional space. Therefore, any orthogonal transformation of the vector will result in a Gaussian white random vector. In particular, under most types of discrete Fourier transform, such as FFT and Hartley, the transform W of w will be a Gaussian white noise vector, too; that is, the n Fourier coefficients of w will be independent Gaussian variables with zero mean and the same variance .

The power spectrum P of a random vector w can be defined as the expected value of the squared modulus of each coefficient of its Fourier transform W, that is, Pi = E(|Wi|2). Under that definition, a Gaussian white noise vector will have a perfectly flat power spectrum, with Pi = σ2 for all i.

If w is a white random vector, but not a Gaussian one, its Fourier coefficients Wi will not be completely independent of each other; although for large n and common probability distributions the dependencies are very subtle, and their pairwise correlations can be assumed to be zero.

Often the weaker condition statistically uncorrelated is used in the definition of white noise, instead of statistically independent. However, some of the commonly expected properties of white noise (such as flat power spectrum) may not hold for this weaker version. Under this assumption, the stricter version can be referred to explicitly as independent white noise vector. [20] :p.60 Other authors use strongly white and weakly white instead. [21]

An example of a random vector that is Gaussian white noise in the weak but not in the strong sense is where is a normal random variable with zero mean, and is equal to or to , with equal probability. These two variables are uncorrelated and individually normally distributed, but they are not jointly normally distributed and are not independent. If is rotated by 45 degrees, its two components will still be uncorrelated, but their distribution will no longer be normal.

In some situations, one may relax the definition by allowing each component of a white random vector to have non-zero expected value . In image processing especially, where samples are typically restricted to positive values, one often takes to be one half of the maximum sample value. In that case, the Fourier coefficient corresponding to the zero-frequency component (essentially, the average of the ) will also have a non-zero expected value ; and the power spectrum will be flat only over the non-zero frequencies.

Discrete-time white noise

A discrete-time stochastic process is a generalization of a random vector with a finite number of components to infinitely many components. A discrete-time stochastic process is called white noise if its mean is equal to zero for all , i.e. and if the autocorrelation function has a nonzero value only for , i.e. .[ citation needed ][ clarification needed ]

Continuous-time white noise

In order to define the notion of white noise in the theory of continuous-time signals, one must replace the concept of a random vector by a continuous-time random signal; that is, a random process that generates a function of a real-valued parameter .

Such a process is said to be white noise in the strongest sense if the value for any time is a random variable that is statistically independent of its entire history before . A weaker definition requires independence only between the values and at every pair of distinct times and . An even weaker definition requires only that such pairs and be uncorrelated. [22] As in the discrete case, some authors adopt the weaker definition for white noise, and use the qualifier independent to refer to either of the stronger definitions. Others use weakly white and strongly white to distinguish between them.

However, a precise definition of these concepts is not trivial, because some quantities that are finite sums in the finite discrete case must be replaced by integrals that may not converge. Indeed, the set of all possible instances of a signal is no longer a finite-dimensional space , but an infinite-dimensional function space. Moreover, by any definition a white noise signal would have to be essentially discontinuous at every point; therefore even the simplest operations on , like integration over a finite interval, require advanced mathematical machinery.

Some authors[ citation needed ][ clarification needed ] require each value to be a real-valued random variable with expectation and some finite variance . Then the covariance between the values at two times and is well-defined: it is zero if the times are distinct, and if they are equal. However, by this definition, the integral

over any interval with positive width would be simply the width times the expectation: .[ clarification needed ] This property renders the concept inadequate as a model of white noise signals either in a physical or mathematical sense.[ clarification needed ]

Therefore, most authors define the signal indirectly by specifying random values for the integrals of and over each interval . In this approach, however, the value of at an isolated time cannot be defined as a real-valued random variable[ citation needed ]. Also the covariance becomes infinite when ; and the autocorrelation function must be defined as , where is some real constant and is the Dirac delta function.[ clarification needed ]

In this approach, one usually specifies that the integral of over an interval is a real random variable with normal distribution, zero mean, and variance ; and also that the covariance of the integrals , is , where is the width of the intersection of the two intervals . This model is called a Gaussian white noise signal (or process).

In the mathematical field known as white noise analysis, a Gaussian white noise is defined as a stochastic tempered distribution, i.e. a random variable with values in the space of tempered distributions. Analogous to the case for finite-dimensional random vectors, a probability law on the infinite-dimensional space can be defined via its characteristic function (existence and uniqueness are guaranteed by an extension of the Bochner–Minlos theorem, which goes under the name Bochner–Minlos–Sazanov theorem); analogously to the case of the multivariate normal distribution , which has characteristic function

the white noise must satisfy

where is the natural pairing of the tempered distribution with the Schwartz function , taken scenariowise for , and .

Mathematical applications

Time series analysis and regression

In statistics and econometrics one often assumes that an observed series of data values is the sum of the values generated by a deterministic linear process, depending on certain independent (explanatory) variables, and on a series of random noise values. Then regression analysis is used to infer the parameters of the model process from the observed data, e.g. by ordinary least squares, and to test the null hypothesis that each of the parameters is zero against the alternative hypothesis that it is non-zero. Hypothesis testing typically assumes that the noise values are mutually uncorrelated with zero mean and have the same Gaussian probability distribution in other words, that the noise is Gaussian white (not just white). If there is non-zero correlation between the noise values underlying different observations then the estimated model parameters are still unbiased, but estimates of their uncertainties (such as confidence intervals) will be biased (not accurate on average). This is also true if the noise is heteroskedastic  that is, if it has different variances for different data points.

Alternatively, in the subset of regression analysis known as time series analysis there are often no explanatory variables other than the past values of the variable being modeled (the dependent variable). In this case the noise process is often modeled as a moving average process, in which the current value of the dependent variable depends on current and past values of a sequential white noise process.

Random vector transformations

These two ideas are crucial in applications such as channel estimation and channel equalization in communications and audio. These concepts are also used in data compression.

In particular, by a suitable linear transformation (a coloring transformation), a white random vector can be used to produce a non-white random vector (that is, a list of random variables) whose elements have a prescribed covariance matrix. Conversely, a random vector with known covariance matrix can be transformed into a white random vector by a suitable whitening transformation.

Generation

White noise may be generated digitally with a digital signal processor, microprocessor, or microcontroller. Generating white noise typically entails feeding an appropriate stream of random numbers to a digital-to-analog converter. The quality of the white noise will depend on the quality of the algorithm used. [23]

Informal use

The term is sometimes used as a colloquialism to describe a backdrop of ambient sound, creating an indistinct or seamless commotion. Following are some examples:

The term can also be used metaphorically, as in the novel White Noise (1985) by Don DeLillo which explores the symptoms of modern culture that came together so as to make it difficult for an individual to actualize their ideas and personality.

See also

Related Research Articles

<span class="mw-page-title-main">Independence (probability theory)</span> When the occurrence of one event does not affect the likelihood of another

Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other.

<span class="mw-page-title-main">Variance</span> Statistical measure of how far values spread from their average

In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .

<span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables, each of which clusters around a mean value.

<span class="mw-page-title-main">Correlation</span> Statistical concept

In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are linearly related. Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the so-called demand curve.

In probability theory and statistics, covariance is a measure of the joint variability of two random variables.

In probability theory and statistics, two real-valued random variables, , , are said to be uncorrelated if their covariance, , is zero. If two variables are uncorrelated, there is no linear relationship between them.

<span class="mw-page-title-main">Rayleigh distribution</span> Probability distribution

In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution for nonnegative-valued random variables. Up to rescaling, it coincides with the chi distribution with two degrees of freedom. The distribution is named after Lord Rayleigh.

In probability theory and statistics, a Gaussian process is a stochastic process, such that every finite collection of those random variables has a multivariate normal distribution. The distribution of a Gaussian process is the joint distribution of all those random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space.

In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis.

In statistics, propagation of uncertainty is the effect of variables' uncertainties on the uncertainty of a function based on them. When the variables are the values of experimental measurements they have uncertainties due to measurement limitations which propagate due to the combination of variables in the function.

In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized. The underlying random variables may be random real numbers, or they may be random vectors, in which case the mixture distribution is a multivariate distribution.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

In statistics, sometimes the covariance matrix of a multivariate random variable is not known but has to be estimated. Estimation of covariance matrices then deals with the question of how to approximate the actual covariance matrix on the basis of a sample from the multivariate distribution. Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix. The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in Rp×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. In addition, if the random variable has a normal distribution, the sample covariance matrix has a Wishart distribution and a slightly differently scaled version of it is the maximum likelihood estimate. Cases involving missing data, heteroscedasticity, or autocorrelated residuals require deeper considerations. Another issue is the robustness to outliers, to which sample covariance matrices are highly sensitive.

In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space , closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the German mathematician Carl Friedrich Gauss. One reason why Gaussian measures are so ubiquitous in probability theory is the central limit theorem. Loosely speaking, it states that if a random variable is obtained by summing a large number of independent random variables with variance 1, then has variance and its law is approximately Gaussian.

A whitening transformation or sphering transformation is a linear transformation that transforms a vector of random variables with a known covariance matrix into a set of new variables whose covariance is the identity matrix, meaning that they are uncorrelated and each have variance 1. The transformation is called "whitening" because it changes the input vector into a white noise vector.

In probability theory and statistics, a cross-covariance matrix is a matrix whose element in the i, j position is the covariance between the i-th element of a random vector and j-th element of another random vector. A random vector is a random variable with multiple dimensions. Each element of the vector is a scalar random variable. Each element has either a finite number of observed empirical values or a finite or infinite number of potential values. The potential values are specified by a theoretical joint probability distribution. Intuitively, the cross-covariance matrix generalizes the notion of covariance to multiple dimensions.

In probability theory, the family of complex normal distributions, denoted or , characterizes complex random variables whose real and imaginary parts are jointly normal. The complex normal family has three parameters: location parameter μ, covariance matrix , and the relation matrix . The standard complex normal is the univariate distribution with , , and .

<span class="mw-page-title-main">Generalized chi-squared distribution</span> A theory in statistics

In probability theory and statistics, the generalized chi-squared distribution is the distribution of a quadratic form of a multinormal variable, or a linear combination of different normal variables and squares of normal variables. Equivalently, it is also a linear sum of independent noncentral chi-square variables and a normal variable. There are several other such generalizations for which the same term is sometimes used; some of them are special cases of the family discussed here, for example the gamma distribution.

Within bayesian statistics for machine learning, kernel methods arise from the assumption of an inner product space or similarity structure on inputs. For some such methods, such as support vector machines (SVMs), the original formulation and its regularization were not Bayesian in nature. It is helpful to understand them from a Bayesian perspective. Because the kernels are not necessarily positive semidefinite, the underlying structure may not be inner product spaces, but instead more general reproducing kernel Hilbert spaces. In Bayesian probability kernel methods are a key component of Gaussian processes, where the kernel function is known as the covariance function. Kernel methods have traditionally been used in supervised learning problems where the input space is usually a space of vectors while the output space is a space of scalars. More recently these methods have been extended to problems that deal with multiple outputs such as in multi-task learning.

<span class="mw-page-title-main">Complex random variable</span>

In probability theory and statistics, complex random variables are a generalization of real-valued random variables to complex numbers, i.e. the possible values a complex random variable may take are complex numbers. Complex random variables can always be considered as pairs of real random variables: their real and imaginary parts. Therefore, the distribution of one complex random variable may be interpreted as the joint distribution of two real random variables.

References

  1. Carter, Mancini, Bruce, Ron (2009). Op Amps for Everyone. Texas Instruments. pp. 10–11. ISBN   978-0-08-094948-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. Stein, Michael L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer. p. 40. doi:10.1007/978-1-4612-1494-6. ISBN   978-1-4612-7166-6. white light is approximately an equal mixture of all visible frequencies of light, which was demonstrated by Isaac Newton
  3. Stein, Michael L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer. p. 40. doi:10.1007/978-1-4612-1494-6. ISBN   978-1-4612-7166-6. The best-known generalized process is white noise, which can be thought of as a continuous time analogue to a sequence of independent and identically distributed observations.
  4. Diebold, Frank (2007). Elements of Forecasting (Fourth ed.).
  5. Fusco, G; Garland, T. Jr; Hunt, G; Hughes, NC (2011). "Developmental trait evolution in trilobites". Evolution. 66 (2): 314–329. doi: 10.1111/j.1558-5646.2011.01447.x . PMID   22276531. S2CID   14726662.
  6. Claire Shipman (2005), Good Morning America : "The political rhetoric on Social Security is white noise." Said on ABC's Good Morning America TV show, January 11, 2005.
  7. Don DeLillo (1985), White Noise
  8. Clark, Dexxter. "Did you know all these white noise secrets? (music production tips)". www.learnhowtoproducemusic.com. Retrieved 2022-07-25.
  9. O'Connell, Pamela LiCalzi (8 April 2004). "Lottery Numbers and Books With a Voice". The New York Times . Archived from the original on 26 July 2009. Retrieved 25 July 2022.
  10. Jastreboff, P. J. (2000). "Tinnitus Habituation Therapy (THT) and Tinnitus Retraining Therapy (TRT)". Tinnitus Handbook. San Diego: Singular. pp. 357–376.
  11. López, HH; Bracha, AS; Bracha, HS (September 2002). "Evidence based complementary intervention for insomnia" (PDF). Hawaii Med J. 61 (9): 192, 213. PMID   12422383.
  12. Green, Penelope (2018-12-27). "The Sound of Silence". The New York Times. ISSN   0362-4331 . Retrieved 2021-05-20.
  13. Noell, Courtney A; William L Meyerhoff (February 2003). "Tinnitus. Diagnosis and treatment of this elusive symptom". Geriatrics. 58 (2): 28–34. ISSN   0016-867X. PMID   12596495.
  14. Soderlund, Goran; Sverker Sikstrom; Jan Loftesnes; Edmund Sonuga Barke (2010). "The effects of background white noise on memory performance in inattentive school children". Behavioral and Brain Functions. 6 (1): 55. doi: 10.1186/1744-9081-6-55 . PMC   2955636 . PMID   20920224.
  15. Söderlund, Göran; Sverker Sikström; Andrew Smart (2007). "Listen to the noise: Noise is beneficial for cognitive performance in ADHD". Journal of Child Psychology and Psychiatry. 48 (8): 840–847. CiteSeerX   10.1.1.452.530 . doi:10.1111/j.1469-7610.2007.01749.x. ISSN   0021-9630. PMID   17683456.
  16. Loewen, Laura J.; Peter Suedfeld (1992-05-01). "Cognitive and Arousal Effects of Masking Office Noise". Environment and Behavior. 24 (3): 381–395. Bibcode:1992EnvBe..24..381L. doi:10.1177/0013916592243006. S2CID   144443528.
  17. Baker, Mary Anne; Dennis H. Holding (July 1993). "The effects of noise and speech on cognitive task performance". Journal of General Psychology. 120 (3): 339–355. doi:10.1080/00221309.1993.9711152. ISSN   0022-1309. PMID   8138798.
  18. Rausch, V. H. (2014). White noise improves learning by modulating activity in dopaminergic midbrain regions and right superior temporal sulcus . Journal of cognitive neuroscience, 1469-1480
  19. Jeffrey A. Fessler (1998), On Transformations of Random Vectors. Technical report 314, Dept. of Electrical Engineering and Computer Science, Univ. of Michigan. (PDF)
  20. Eric Zivot and Jiahui Wang (2006), Modeling Financial Time Series with S-PLUS. Second Edition. (PDF)
  21. Francis X. Diebold (2007), Elements of Forecasting, 4th edition. (PDF)
  22. White noise process Archived 2016-09-11 at the Wayback Machine . By Econterms via About.com. Accessed on 2013-02-12.
  23. Matt Donadio. "How to Generate White Gaussian Noise" (PDF). Archived from the original (PDF) on 2021-02-24. Retrieved 2012-09-19.
  24. white noise, Merriam-Webster, retrieved 2022-05-06