Uniform integrability

Last updated

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.

Contents

Measure-theoretic definition

Uniform integrability is an extension to the notion of a family of functions being dominated in which is central in dominated convergence. Several textbooks on real analysis and measure theory use the following definition: [1] [2]

Definition A: Let be a positive measure space. A set is called uniformly integrable if , and to each there corresponds a such that

whenever and

Definition A is rather restrictive for infinite measure spaces. A more general definition [3] of uniform integrability that works well in general measures spaces was introduced by G. A. Hunt.

Definition H: Let be a positive measure space. A set is called uniformly integrable if and only if

where .


Since Hunt's definition is equivalent to Definition A when the underlying measure space is finite (see Theorem 2 below), Definition H is widely adopted in Mathematics.

The following result [4] provides another equivalent notion to Hunt's. This equivalency is sometimes given as definition for uniform integrability.

Theorem 1: If is a (positive) finite measure space, then a set is uniformly integrable if and only if

If in addition , then uniform integrability is equivalent to either of the following conditions

1. .

2.

When the underlying space is -finite, Hunt's definition is equivalent to the following:

Theorem 2: Let be a -finite measure space, and be such that almost everywhere. A set is uniformly integrable if and only if , and for any , there exits such that

whenever .

A consequence of Theorems 1 and 2 is that equivalence of Definitions A and H for finite measures follows. Indeed, the statement in Definition A is obtained by taking in Theorem 2.

Probability definition

In the theory of probability, Definition A or the statement of Theorem 1 are often presented as definitions of uniform integrability using the notation expectation of random variables., [5] [6] [7] that is,

1. A class of random variables is called uniformly integrable if:

or alternatively

2. A class of random variables is called uniformly integrable (UI) if for every there exists such that , where is the indicator function .

Tightness and uniform integrability

Another concept associated with uniform integrability is that of tightness. In this article tightness is taken in a more general setting.

Definition: Suppose measurable space is a measure space. Let be a collection of sets of finite measure. A family is tight with respect to if

A tight family with respect to is just said to be tight.

When the measure space is a metric space equipped with the Borel algebra, is a regular measure, and is the collection of all compact subsets of , the notion of -tightness discussed above coincides with the well known concept of tightness used in the analysis of regular measures in metric spaces

For -finite measure spaces, it can be shown that if a family is uniformly integrable, then is tight. This is capture by the following result which is often used as definition of uniform integrabiliy in the Analysis literature:

Theorem 3: Suppose is a finite measure space. A family is uniformly integrable if and only if

  1. .
  2. is tight.

When , condition 3 is redundant (see Theorem 1 above).

Uniform absolute continuity

There is another notion of uniformity, slightly different than uniform integrability, which also has many applications in probability and measure theory, and which does not require random variables to have a finite integral [8]

Definition: Suppose is a probability space. A classed of random variables is uniformly absolutely continuous with respect to if for any , there is such that whenever .

It is equivalent to uniform integrability if the measure is finite and has no atoms.

The term "uniform absolute continuity" is not standard,[ citation needed ] but is used by some authors. [9] [10]

The following results apply to the probabilistic definition. [11]

Non-UI sequence of RVs. The area under the strip is always equal to 1, but
X
n
-
0
{\displaystyle X_{n}\to 0}
pointwise. Uniform integrability.png
Non-UI sequence of RVs. The area under the strip is always equal to 1, but pointwise.

Relevant theorems

In the following we use the probabilistic framework, but regardless of the finiteness of the measure, by adding the boundedness condition on the chosen subset of .

Uniform integrability and stochastic ordering

A family of random variables is uniformly integrable if and only if [16] there exists a random variable such that and for all , where denotes the increasing convex stochastic order defined by if for all nondecreasing convex real functions .

Relation to convergence of random variables

A sequence converges to in the norm if and only if it converges in measure to and it is uniformly integrable. In probability terms, a sequence of random variables converging in probability also converge in the mean if and only if they are uniformly integrable. [17] This is a generalization of Lebesgue's dominated convergence theorem, see Vitali convergence theorem.

Citations

  1. Rudin, Walter (1987). Real and Complex Analysis (3 ed.). Singapore: McGraw–Hill Book Co. p. 133. ISBN   0-07-054234-1.
  2. Royden, H.L. & Fitzpatrick, P.M. (2010). Real Analysis (4 ed.). Boston: Prentice Hall. p. 93. ISBN   978-0-13-143747-0.
  3. Hunt, G. A. (1966). Martingales et Processus de Markov. Paris: Dunod. p. 254.
  4. Klenke, A. (2008). Probability Theory: A Comprehensive Course. Berlin: Springer Verlag. pp. 134–137. ISBN   978-1-84800-047-6.
  5. Williams, David (1997). Probability with Martingales (Repr. ed.). Cambridge: Cambridge Univ. Press. pp. 126–132. ISBN   978-0-521-40605-5.
  6. Gut, Allan (2005). Probability: A Graduate Course. Springer. pp. 214–218. ISBN   0-387-22833-0.
  7. Bass, Richard F. (2011). Stochastic Processes. Cambridge: Cambridge University Press. pp. 356–357. ISBN   978-1-107-00800-7.
  8. Bass 2011, p. 356.
  9. Benedetto, J. J. (1976). Real Variable and Integration. Stuttgart: B. G. Teubner. p. 89. ISBN   3-519-02209-5.
  10. Burrill, C. W. (1972). Measure, Integration, and Probability. McGraw-Hill. p. 180. ISBN   0-07-009223-0.
  11. Gut 2005, pp. 215–216.
  12. Dunford, Nelson (1938). "Uniformity in linear spaces". Transactions of the American Mathematical Society. 44 (2): 305–356. doi: 10.1090/S0002-9947-1938-1501971-X . ISSN   0002-9947.
  13. Dunford, Nelson (1939). "A mean ergodic theorem". Duke Mathematical Journal. 5 (3): 635–646. doi:10.1215/S0012-7094-39-00552-1. ISSN   0012-7094.
  14. Meyer, P.A. (1966). Probability and Potentials, Blaisdell Publishing Co, N. Y. (p.19, Theorem T22).
  15. Poussin, C. De La Vallee (1915). "Sur L'Integrale de Lebesgue". Transactions of the American Mathematical Society. 16 (4): 435–501. doi:10.2307/1988879. hdl: 10338.dmlcz/127627 . JSTOR   1988879.
  16. Leskelä, L.; Vihola, M. (2013). "Stochastic order characterization of uniform integrability and tightness". Statistics and Probability Letters. 83 (1): 382–389. arXiv: 1106.0607 . doi:10.1016/j.spl.2012.09.023.
  17. Bogachev, Vladimir I. (2007). "The spaces Lp and spaces of measures". Measure Theory Volume I. Berlin Heidelberg: Springer-Verlag. p. 268. doi:10.1007/978-3-540-34514-5_4. ISBN   978-3-540-34513-8.

Related Research Articles

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non-increasing, or non-decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

<span class="mw-page-title-main">Jensen's inequality</span> Theorem of convex functions

In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

<span class="mw-page-title-main">Mixing (mathematics)</span> Mathematical description of mixing substances

In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: e.g. mixing paint, mixing drinks, industrial mixing.

In functional analysis, a branch of mathematics, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute.

In mathematics, more specifically measure theory, there are various notions of the convergence of measures. For an intuitive general sense of what is meant by convergence of measures, consider a sequence of measures μn on a space, sharing a common collection of measurable sets. Such a sequence might represent an attempt to construct 'better and better' approximations to a desired measure μ that is difficult to obtain directly. The meaning of 'better and better' is subject to all the usual caveats for taking limits; for any error tolerance ε > 0 we require there be N sufficiently large for nN to ensure the 'difference' between μn and μ is smaller than ε. Various notions of convergence specify precisely what the word 'difference' should mean in that description; these notions are not equivalent to one another, and vary in strength.

The Titchmarsh convolution theorem describes the properties of the support of the convolution of two functions. It was proven by Edward Charles Titchmarsh in 1926.

In real analysis and measure theory, the Vitali convergence theorem, named after the Italian mathematician Giuseppe Vitali, is a generalization of the better-known dominated convergence theorem of Henri Lebesgue. It is a characterization of the convergence in Lp in terms of convergence in measure and a condition related to uniform integrability.

In mathematical analysis, and especially in real, harmonic analysis and functional analysis, an Orlicz space is a type of function space which generalizes the Lp spaces. Like the Lp spaces, they are Banach spaces. The spaces are named for Władysław Orlicz, who was the first to define them in 1932.

In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality. The integral was introduced by Gelfand for the case when the measure space is an interval with Lebesgue measure. The integral is also called the weak integral in contrast to the Bochner integral, which is the strong integral.

The uncertainty theory invented by Baoding Liu is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In mathematics, the conformal radius is a way to measure the size of a simply connected planar domain D viewed from a point z in it. As opposed to notions using Euclidean distance, this notion is well-suited to use in complex analysis, in particular in conformal maps and conformal geometry.

In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar. The theory was further developed by Dorothy Maharam (1958) and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961). Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas. Lifting theory continued to develop since then, yielding new results and applications.

In geometry, a valuation is a finitely additive function from a collection of subsets of a set to an abelian semigroup. For example, Lebesgue measure is a valuation on finite unions of convex bodies of Other examples of valuations on finite unions of convex bodies of are surface area, mean width, and Euler characteristic.

In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.

References