Discrete Fourier transform

Last updated
Fig 1: Relationship between the (continuous) Fourier transform and the discrete Fourier transform.
Left: A continuous function (top) and its Fourier transform (bottom).
Center-left: Periodic summation of the original function (top). Fourier transform (bottom) is zero except at discrete points. The inverse transform is a sum of sinusoids called Fourier series.
Center-right: Original function is discretized (multiplied by a Dirac comb) (top). Its Fourier transform (bottom) is a periodic summation (DTFT) of the original transform.
Right: The DFT (bottom) computes discrete samples of the continuous DTFT. The inverse DFT (top) is a periodic summation of the original samples. The FFT algorithm computes one cycle of the DFT and its inverse is one cycle of the DFT inverse. From Continuous To Discrete Fourier Transform.gif
Fig 1: Relationship between the (continuous) Fourier transform and the discrete Fourier transform.
Left: A continuous function (top) and its Fourier transform (bottom).
Center-left: Periodic summation of the original function (top). Fourier transform (bottom) is zero except at discrete points. The inverse transform is a sum of sinusoids called Fourier series.
Center-right: Original function is discretized (multiplied by a Dirac comb) (top). Its Fourier transform (bottom) is a periodic summation (DTFT) of the original transform.
Right: The DFT (bottom) computes discrete samples of the continuous DTFT. The inverse DFT (top) is a periodic summation of the original samples. The FFT algorithm computes one cycle of the DFT and its inverse is one cycle of the DFT inverse.
Fig 2: Depiction of a Fourier transform (upper left) and its periodic summation (DTFT) in the lower left corner. The spectral sequences at (a) upper right and (b) lower right are respectively computed from (a) one cycle of the periodic summation of s(t) and (b) one cycle of the periodic summation of the s(nT) sequence. The respective formulas are (a) the Fourier series
integral
and (b) the DFT
summation
. Its similarities to the original transform, S(f), and its relative computational ease are often the motivation for computing a DFT sequence. Fourier transform, Fourier series, DTFT, DFT.svg
Fig 2: Depiction of a Fourier transform (upper left) and its periodic summation (DTFT) in the lower left corner. The spectral sequences at (a) upper right and (b) lower right are respectively computed from (a) one cycle of the periodic summation of s(t) and (b) one cycle of the periodic summation of the s(nT) sequence. The respective formulas are (a) the Fourier series integral and (b) the DFTsummation. Its similarities to the original transform, S(f), and its relative computational ease are often the motivation for computing a DFT sequence.

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. [upper-alpha 1] [1]   An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous (and periodic), and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

Contents

The DFT is the most important discrete transform, used to perform Fourier analysis in many practical applications. [2] In digital signal processing, the function is any quantity or signal that varies over time, such as the pressure of a sound wave, a radio signal, or daily temperature readings, sampled over a finite time interval (often defined by a window function [3] ). In image processing, the samples can be the values of pixels along a row or column of a raster image. The DFT is also used to efficiently solve partial differential equations, and to perform other operations such as convolutions or multiplying large integers.

Since it deals with a finite amount of data, it can be implemented in computers by numerical algorithms or even dedicated hardware. These implementations usually employ efficient fast Fourier transform (FFT) algorithms; [4] so much so that the terms "FFT" and "DFT" are often used interchangeably. Prior to its current usage, the "FFT" initialism may have also been used for the ambiguous term "finite Fourier transform".

The DFT has many applications, including purely mathematical ones with no physical interpretation. But physically it can be related to signal processing as a discrete version (i.e. samples) of the discrete-time Fourier transform (DTFT), which is a continuous and periodic function. The DFT computes N equally-spaced samples of one cycle of the DTFT. (see Fig.2 and § Sampling the DTFT)

Definition

The discrete Fourier transform transforms a sequence of N complex numbers into another sequence of complex numbers, which is defined by:

Discrete Fourier transform

  

(Eq.1)

The transform is sometimes denoted by the symbol , as in or or . [upper-alpha 2]

Eq.1 can be interpreted or derived in various ways, for example:

Eq.1 can also be evaluated outside the domain , and that extended sequence is -periodic. Accordingly, other sequences of indices are sometimes used, such as (if is even) and (if is odd), which amounts to swapping the left and right halves of the result of the transform. [5]

The inverse transform is given by:

Inverse transform
  (Eq.2)

Eq.2 . is also -periodic (in index n). In Eq.2 , each is a complex number whose polar coordinates are the amplitude and phase of a complex sinusoidal component of function (see Discrete Fourier series) The sinusoid's frequency is cycles per samples.

The normalization factor multiplying the DFT and IDFT (here 1 and ) and the signs of the exponents are the most common conventions. The only actual requirements of these conventions are that the DFT and IDFT have opposite-sign exponents and that the product of their normalization factors be An uncommon normalization of for both the DFT and IDFT makes the transform-pair unitary.

Example

This example demonstrates how to apply the DFT to a sequence of length and the input vector

Calculating the DFT of using Eq.1

results in

Properties

Linearity

The DFT is a linear transform, i.e. if and , then for any complex numbers :

Time and frequency reversal

Reversing the time (i.e. replacing by ) [upper-alpha 4] in corresponds to reversing the frequency (i.e. by ). [6] :p.421 Mathematically, if represents the vector x then

if
then

Conjugation in time

If then . [6] :p.423

Real and imaginary part

This table shows some mathematical operations on in the time domain and the corresponding effects on its DFT in the frequency domain.

PropertyTime domain
Frequency domain
Real part in time
Imaginary part in time
Real part in frequency
Imaginary part in frequency

Orthogonality

The vectors form an orthogonal basis over the set of N-dimensional complex vectors:

where is the Kronecker delta. (In the last step, the summation is trivial if , where it is 1 + 1 + ⋯ = N, and otherwise is a geometric series that can be explicitly summed to obtain zero.) This orthogonality condition can be used to derive the formula for the IDFT from the definition of the DFT, and is equivalent to the unitarity property below.

The Plancherel theorem and Parseval's theorem

If and are the DFTs of and respectively then Parseval's theorem states:

where the star denotes complex conjugation. The Plancherel theorem is a special case of Parseval's theorem and states:

These theorems are also equivalent to the unitary condition below.

Periodicity

The periodicity can be shown directly from the definition:

Similarly, it can be shown that the IDFT formula leads to a periodic extension.

Shift theorem

Multiplying by a linear phase for some integer m corresponds to a circular shift of the output : is replaced by , where the subscript is interpreted modulo N (i.e., periodically). Similarly, a circular shift of the input corresponds to multiplying the output by a linear phase. Mathematically, if represents the vector x then

if
then
and

Circular convolution theorem and cross-correlation theorem

The convolution theorem for the discrete-time Fourier transform (DTFT) indicates that a convolution of two sequences can be obtained as the inverse transform of the product of the individual transforms. An important simplification occurs when one of sequences is N-periodic, denoted here by because is non-zero at only discrete frequencies (see DTFT § Periodic data), and therefore so is its product with the continuous function   That leads to a considerable simplification of the inverse transform.

where is a periodic summation of the sequence:

Customarily, the DFT and inverse DFT summations are taken over the domain . Defining those DFTs as and , the result is:

In practice, the sequence is usually length N or less, and is a periodic extension of an N-length -sequence, which can also be expressed as a circular function:

Then the convolution can be written as:

which gives rise to the interpretation as a circular convolution of and [7] [8] It is often used to efficiently compute their linear convolution. (see Circular convolution, Fast convolution algorithms, and Overlap-save)

Similarly, the cross-correlation of and is given by:

Uniqueness of the Discrete Fourier Transform

As seen above, the discrete Fourier transform has the fundamental property of carrying convolution into componentwise product. A natural question is whether it is the only one with this ability. It has been shown [9] [10] that any linear transform that turns convolution into pointwise product is the DFT up to a permutation of coefficients. Since the number of permutations of n elements equals n!, there exists exactly n! linear and invertible maps with the same fundamental property as the DFT with respect to convolution.

Convolution theorem duality

It can also be shown that:

which is the circular convolution of and .

Trigonometric interpolation polynomial

The trigonometric interpolation polynomial

where the coefficients Xk are given by the DFT of xn above, satisfies the interpolation property for .

For even N, notice that the Nyquist component is handled specially.

This interpolation is not unique: aliasing implies that one could add N to any of the complex-sinusoid frequencies (e.g. changing to ) without changing the interpolation property, but giving different values in between the points. The choice above, however, is typical because it has two useful properties. First, it consists of sinusoids whose frequencies have the smallest possible magnitudes: the interpolation is bandlimited. Second, if the are real numbers, then is real as well.

In contrast, the most obvious trigonometric interpolation polynomial is the one in which the frequencies range from 0 to (instead of roughly to as above), similar to the inverse DFT formula. This interpolation does not minimize the slope, and is not generally real-valued for real ; its use is a common mistake.

The unitary DFT

Another way of looking at the DFT is to note that in the above discussion, the DFT can be expressed as the DFT matrix, a Vandermonde matrix, introduced by Sylvester in 1867,

where is a primitive Nth root of unity.

For example, in the case when , , and

(which is a Hadamard matrix) or when as in the Discrete Fourier transform § Example above, , and

The inverse transform is then given by the inverse of the above matrix,

With unitary normalization constants , the DFT becomes a unitary transformation, defined by a unitary matrix:

where is the determinant function. The determinant is the product of the eigenvalues, which are always or as described below. In a real vector space, a unitary transformation can be thought of as simply a rigid rotation of the coordinate system, and all of the properties of a rigid rotation can be found in the unitary DFT.

The orthogonality of the DFT is now expressed as an orthonormality condition (which arises in many areas of mathematics as described in root of unity):

If X is defined as the unitary DFT of the vector x, then

and the Parseval's theorem is expressed as

If we view the DFT as just a coordinate transformation which simply specifies the components of a vector in a new coordinate system, then the above is just the statement that the dot product of two vectors is preserved under a unitary DFT transformation. For the special case , this implies that the length of a vector is preserved as well — this is just Plancherel theorem,

A consequence of the circular convolution theorem is that the DFT matrix F diagonalizes any circulant matrix.

Expressing the inverse DFT in terms of the DFT

A useful property of the DFT is that the inverse DFT can be easily expressed in terms of the (forward) DFT, via several well-known "tricks". (For example, in computations, it is often convenient to only implement a fast Fourier transform corresponding to one transform direction and then to get the other transform direction from the first.)

First, we can compute the inverse DFT by reversing all but one of the inputs (Duhamel et al., 1988):

(As usual, the subscripts are interpreted modulo N; thus, for , we have .)

Second, one can also conjugate the inputs and outputs:

Third, a variant of this conjugation trick, which is sometimes preferable because it requires no modification of the data values, involves swapping real and imaginary parts (which can be done on a computer simply by modifying pointers). Define as with its real and imaginary parts swapped—that is, if then is . Equivalently, equals . Then

That is, the inverse transform is the same as the forward transform with the real and imaginary parts swapped for both input and output, up to a normalization (Duhamel et al., 1988).

The conjugation trick can also be used to define a new transform, closely related to the DFT, that is involutory—that is, which is its own inverse. In particular, is clearly its own inverse: . A closely related involutory transformation (by a factor of ) is , since the factors in cancel the 2. For real inputs , the real part of is none other than the discrete Hartley transform, which is also involutory.

Eigenvalues and eigenvectors

The eigenvalues of the DFT matrix are simple and well-known, whereas the eigenvectors are complicated, not unique, and are the subject of ongoing research. Explicit formulas are given with a significant amount of number theory. [11]

Consider the unitary form defined above for the DFT of length N, where

This matrix satisfies the matrix polynomial equation:

This can be seen from the inverse properties above: operating twice gives the original data in reverse order, so operating four times gives back the original data and is thus the identity matrix. This means that the eigenvalues satisfy the equation:

Therefore, the eigenvalues of are the fourth roots of unity: is +1, −1, +i, or −i.

Since there are only four distinct eigenvalues for this matrix, they have some multiplicity. The multiplicity gives the number of linearly independent eigenvectors corresponding to each eigenvalue. (There are N independent eigenvectors; a unitary matrix is never defective.)

The problem of their multiplicity was solved by McClellan and Parks (1972), although it was later shown to have been equivalent to a problem solved by Gauss (Dickinson and Steiglitz, 1982). The multiplicity depends on the value of N modulo 4, and is given by the following table:

Multiplicities of the eigenvalues λ of the unitary DFT matrix U as a function of the transform size N (in terms of an integer m).
size Nλ = +1λ = −1λ = −iλ = +i
4mm + 1mmm − 1
4m + 1m + 1mmm
4m + 2m + 1m + 1mm
4m + 3m + 1m + 1m + 1m

Otherwise stated, the characteristic polynomial of is:

No simple analytical formula for general eigenvectors is known. Moreover, the eigenvectors are not unique because any linear combination of eigenvectors for the same eigenvalue is also an eigenvector for that eigenvalue. Various researchers have proposed different choices of eigenvectors, selected to satisfy useful properties like orthogonality and to have "simple" forms (e.g., McClellan and Parks, 1972; Dickinson and Steiglitz, 1982; Grünbaum, 1982; Atakishiyev and Wolf, 1997; Candan et al., 2000; Hanna et al., 2004; Gurevich and Hadani, 2008).

One method to construct DFT eigenvectors to an eigenvalue is based on the linear combination of operators: [12] [13] [14]

For an arbitrary vector , vector satisfies:

hence, vector is, indeed, the eigenvector of DFT matrix . Operators project vectors onto subspaces which are orthogonal for each value of . [13] That is, for two eigenvectors, and we have:

However, in general, projection operator method does not produce orthogonal eigenvectors within one subspace. [14] The operator can be seen as a matrix, whose columns are eigenvectors of , but they are not orthogonal. When a set of vectors , spanning -dimensional space (where is the multiplicity of eigenvalue ) is chosen to generate the set of eigenvectors to eigenvalue , the mutual orthogonality of is not guaranteed. However, the orthogonal set can be obtained by further applying orthogonalization algorithm to the set , e.g. Gram-Schmidt process. [15]

A straightforward approach to obtain DFT eigenvectors is to discretize an eigenfunction of the continuous Fourier transform, of which the most famous is the Gaussian function. Since periodic summation of the function means discretizing its frequency spectrum and discretization means periodic summation of the spectrum, the discretized and periodically summed Gaussian function yields an eigenvector of the discrete transform:

The closed form expression for the series can be expressed by Jacobi theta functions as

Several other simple closed-form analytical eigenvectors for special DFT period N were found (Kong, 2008 and Casper-Yakimov, 2024):

For DFT period N = 2L + 1 = 4K + 1, where K is an integer, the following is an eigenvector of DFT:

For DFT period N = 2L = 4K, where K is an integer, the following are eigenvectors of DFT:

For DFT period N = 4K - 1, where K is an integer, the following are eigenvectors of DFT:

The choice of eigenvectors of the DFT matrix has become important in recent years in order to define a discrete analogue of the fractional Fourier transform—the DFT matrix can be taken to fractional powers by exponentiating the eigenvalues (e.g., Rubio and Santhanam, 2005). For the continuous Fourier transform, the natural orthogonal eigenfunctions are the Hermite functions, so various discrete analogues of these have been employed as the eigenvectors of the DFT, such as the Kravchuk polynomials (Atakishiyev and Wolf, 1997). The "best" choice of eigenvectors to define a fractional discrete Fourier transform remains an open question, however.

Uncertainty principles

Probabilistic uncertainty principle

If the random variable Xk is constrained by

then

may be considered to represent a discrete probability mass function of n, with an associated probability mass function constructed from the transformed variable,

For the case of continuous functions and , the Heisenberg uncertainty principle states that

where and are the variances of and respectively, with the equality attained in the case of a suitably normalized Gaussian distribution. Although the variances may be analogously defined for the DFT, an analogous uncertainty principle is not useful, because the uncertainty will not be shift-invariant. Still, a meaningful uncertainty principle has been introduced by Massar and Spindel. [16]

However, the Hirschman entropic uncertainty will have a useful analog for the case of the DFT. [17] The Hirschman uncertainty principle is expressed in terms of the Shannon entropy of the two probability functions.

In the discrete case, the Shannon entropies are defined as

and

and the entropic uncertainty principle becomes [17]

The equality is obtained for equal to translations and modulations of a suitably normalized Kronecker comb of period where is any exact integer divisor of . The probability mass function will then be proportional to a suitably translated Kronecker comb of period . [17]

Deterministic uncertainty principle

There is also a well-known deterministic uncertainty principle that uses signal sparsity (or the number of non-zero coefficients). [18] Let and be the number of non-zero elements of the time and frequency sequences and , respectively. Then,

As an immediate consequence of the inequality of arithmetic and geometric means, one also has . Both uncertainty principles were shown to be tight for specifically chosen "picket-fence" sequences (discrete impulse trains), and find practical use for signal recovery applications. [18]

DFT of real and purely imaginary signals

, where denotes complex conjugation.

It follows that for even and are real-valued, and the remainder of the DFT is completely specified by just complex numbers.

, where denotes complex conjugation.

Generalized DFT (shifted and non-linear phase)

It is possible to shift the transform sampling in time and/or frequency domain by some real shifts a and b, respectively. This is sometimes known as a generalized DFT (or GDFT), also called the shifted DFT or offset DFT, and has analogous properties to the ordinary DFT:

Most often, shifts of (half a sample) are used. While the ordinary DFT corresponds to a periodic signal in both time and frequency domains, produces a signal that is anti-periodic in frequency domain () and vice versa for . Thus, the specific case of is known as an odd-time odd-frequency discrete Fourier transform (or O2 DFT). Such shifted transforms are most often used for symmetric data, to represent different boundary symmetries, and for real-symmetric data they correspond to different forms of the discrete cosine and sine transforms.

Another interesting choice is , which is called the centered DFT (or CDFT). The centered DFT has the useful property that, when N is a multiple of four, all four of its eigenvalues (see above) have equal multiplicities (Rubio and Santhanam, 2005) [19]

The term GDFT is also used for the non-linear phase extensions of DFT. Hence, GDFT method provides a generalization for constant amplitude orthogonal block transforms including linear and non-linear phase types. GDFT is a framework to improve time and frequency domain properties of the traditional DFT, e.g. auto/cross-correlations, by the addition of the properly designed phase shaping function (non-linear, in general) to the original linear phase functions (Akansu and Agirman-Tosun, 2010). [20]

The discrete Fourier transform can be viewed as a special case of the z-transform, evaluated on the unit circle in the complex plane; more general z-transforms correspond to complex shifts a and b above.

Discrete transforms embedded in time & space. DirectAndFourierSpaceLocations.png
Discrete transforms embedded in time & space.

Multidimensional DFT

The ordinary DFT transforms a one-dimensional sequence or array that is a function of exactly one discrete variable n. The multidimensional DFT of a multidimensional array that is a function of d discrete variables for in is defined by:

where as above and the d output indices run from . This is more compactly expressed in vector notation, where we define and as d-dimensional vectors of indices from 0 to , which we define as :

where the division is defined as to be performed element-wise, and the sum denotes the set of nested summations above.

The inverse of the multi-dimensional DFT is, analogous to the one-dimensional case, given by:

As the one-dimensional DFT expresses the input as a superposition of sinusoids, the multidimensional DFT expresses the input as a superposition of plane waves, or multidimensional sinusoids. The direction of oscillation in space is . The amplitudes are . This decomposition is of great importance for everything from digital image processing (two-dimensional) to solving partial differential equations. The solution is broken up into plane waves.

The multidimensional DFT can be computed by the composition of a sequence of one-dimensional DFTs along each dimension. In the two-dimensional case the independent DFTs of the rows (i.e., along ) are computed first to form a new array . Then the independent DFTs of y along the columns (along ) are computed to form the final result . Alternatively the columns can be computed first and then the rows. The order is immaterial because the nested summations above commute.

An algorithm to compute a one-dimensional DFT is thus sufficient to efficiently compute a multidimensional DFT. This approach is known as the row-column algorithm. There are also intrinsically multidimensional FFT algorithms.

The real-input multidimensional DFT

For input data consisting of real numbers, the DFT outputs have a conjugate symmetry similar to the one-dimensional case above:

where the star again denotes complex conjugation and the -th subscript is again interpreted modulo (for ).

Applications

The DFT has seen wide usage across a large number of fields; we only sketch a few examples below (see also the references at the end). All applications of the DFT depend crucially on the availability of a fast algorithm to compute discrete Fourier transforms and their inverses, a fast Fourier transform.

Spectral analysis

When the DFT is used for signal spectral analysis, the sequence usually represents a finite set of uniformly spaced time-samples of some signal , where represents time. The conversion from continuous time to samples (discrete-time) changes the underlying Fourier transform of into a discrete-time Fourier transform (DTFT), which generally entails a type of distortion called aliasing. Choice of an appropriate sample-rate (see Nyquist rate ) is the key to minimizing that distortion. Similarly, the conversion from a very long (or infinite) sequence to a manageable size entails a type of distortion called leakage , which is manifested as a loss of detail (a.k.a. resolution) in the DTFT. Choice of an appropriate sub-sequence length is the primary key to minimizing that effect. When the available data (and time to process it) is more than the amount needed to attain the desired frequency resolution, a standard technique is to perform multiple DFTs, for example to create a spectrogram. If the desired result is a power spectrum and noise or randomness is present in the data, averaging the magnitude components of the multiple DFTs is a useful procedure to reduce the variance of the spectrum (also called a periodogram in this context); two examples of such techniques are the Welch method and the Bartlett method; the general subject of estimating the power spectrum of a noisy signal is called spectral estimation.

A final source of distortion (or perhaps illusion) is the DFT itself, because it is just a discrete sampling of the DTFT, which is a function of a continuous frequency domain. That can be mitigated by increasing the resolution of the DFT. That procedure is illustrated at § Sampling the DTFT.

Optics, diffraction, and tomography

The discrete Fourier transform is widely used with spatial frequencies in modeling the way that light, electrons, and other probes travel through optical systems and scatter from objects in two and three dimensions. The dual (direct/reciprocal) vector space of three dimensional objects further makes available a three dimensional reciprocal lattice, whose construction from translucent object shadows (via the Fourier slice theorem) allows tomographic reconstruction of three dimensional objects with a wide range of applications e.g. in modern medicine.

Filter bank

See § FFT filter banks and § Sampling the DTFT.

Data compression

The field of digital signal processing relies heavily on operations in the frequency domain (i.e. on the Fourier transform). For example, several lossy image and sound compression methods employ the discrete Fourier transform: the signal is cut into short segments, each is transformed, and then the Fourier coefficients of high frequencies, which are assumed to be unnoticeable, are discarded. The decompressor computes the inverse transform based on this reduced number of Fourier coefficients. (Compression applications often use a specialized form of the DFT, the discrete cosine transform or sometimes the modified discrete cosine transform.) Some relatively recent compression algorithms, however, use wavelet transforms, which give a more uniform compromise between time and frequency domain than obtained by chopping data into segments and transforming each segment. In the case of JPEG2000, this avoids the spurious image features that appear when images are highly compressed with the original JPEG.

Partial differential equations

Discrete Fourier transforms are often used to solve partial differential equations, where again the DFT is used as an approximation for the Fourier series (which is recovered in the limit of infinite N). The advantage of this approach is that it expands the signal in complex exponentials , which are eigenfunctions of differentiation: . Thus, in the Fourier representation, differentiation is simple—we just multiply by . (However, the choice of is not unique due to aliasing; for the method to be convergent, a choice similar to that in the trigonometric interpolation section above should be used.) A linear differential equation with constant coefficients is transformed into an easily solvable algebraic equation. One then uses the inverse DFT to transform the result back into the ordinary spatial representation. Such an approach is called a spectral method.

Polynomial multiplication

Suppose we wish to compute the polynomial product c(x) = a(x) · b(x). The ordinary product expression for the coefficients of c involves a linear (acyclic) convolution, where indices do not "wrap around." This can be rewritten as a cyclic convolution by taking the coefficient vectors for a(x) and b(x) with constant term first, then appending zeros so that the resultant coefficient vectors a and b have dimension d > deg(a(x)) + deg(b(x)). Then,

Where c is the vector of coefficients for c(x), and the convolution operator is defined so

But convolution becomes multiplication under the DFT:

Here the vector product is taken elementwise. Thus the coefficients of the product polynomial c(x) are just the terms 0, ..., deg(a(x)) + deg(b(x)) of the coefficient vector

With a fast Fourier transform, the resulting algorithm takes O(N log N) arithmetic operations. Due to its simplicity and speed, the Cooley–Tukey FFT algorithm, which is limited to composite sizes, is often chosen for the transform operation. In this case, d should be chosen as the smallest integer greater than the sum of the input polynomial degrees that is factorizable into small prime factors (e.g. 2, 3, and 5, depending upon the FFT implementation).

Multiplication of large integers

The fastest known algorithms for the multiplication of very large integers use the polynomial multiplication method outlined above. Integers can be treated as the value of a polynomial evaluated specifically at the number base, with the coefficients of the polynomial corresponding to the digits in that base (ex. ). After polynomial multiplication, a relatively low-complexity carry-propagation step completes the multiplication.

Convolution

When data is convolved with a function with wide support, such as for downsampling by a large sampling ratio, because of the Convolution theorem and the FFT algorithm, it may be faster to transform it, multiply pointwise by the transform of the filter and then reverse transform it. Alternatively, a good filter is obtained by simply truncating the transformed data and re-transforming the shortened data set.

Some discrete Fourier transform pairs

Some DFT pairs
Note
Frequency shift theorem
Time shift theorem
Real DFT
from the geometric progression formula
from the binomial theorem
is a rectangular window function of W points centered on n=0, where W is an odd integer, and is a sinc-like function (specifically, is a Dirichlet kernel)
Discretization and periodic summation of the scaled Gaussian functions for . Since either or is larger than one and thus warrants fast convergence of one of the two series, for large you may choose to compute the frequency spectrum and convert to the time domain using the discrete Fourier transform.

Generalizations

Representation theory

The DFT can be interpreted as a complex-valued representation of the finite cyclic group. In other words, a sequence of complex numbers can be thought of as an element of -dimensional complex space or equivalently a function from the finite cyclic group of order to the complex numbers, . So is a class function on the finite cyclic group, and thus can be expressed as a linear combination of the irreducible characters of this group, which are the roots of unity.

From this point of view, one may generalize the DFT to representation theory generally, or more narrowly to the representation theory of finite groups.

More narrowly still, one may generalize the DFT by either changing the target (taking values in a field other than the complex numbers), or the domain (a group other than a finite cyclic group), as detailed in the sequel.

Other fields

Many of the properties of the DFT only depend on the fact that is a primitive root of unity, sometimes denoted or (so that ). Such properties include the completeness, orthogonality, Plancherel/Parseval, periodicity, shift, convolution, and unitarity properties above, as well as many FFT algorithms. For this reason, the discrete Fourier transform can be defined by using roots of unity in fields other than the complex numbers, and such generalizations are commonly called number-theoretic transforms (NTTs) in the case of finite fields. For more information, see number-theoretic transform and discrete Fourier transform (general).

Other finite groups

The standard DFT acts on a sequence x0, x1, ..., xN1 of complex numbers, which can be viewed as a function {0, 1, ..., N 1} → C. The multidimensional DFT acts on multidimensional sequences, which can be viewed as functions

This suggests the generalization to Fourier transforms on arbitrary finite groups, which act on functions GC where G is a finite group. In this framework, the standard DFT is seen as the Fourier transform on a cyclic group, while the multidimensional DFT is a Fourier transform on a direct sum of cyclic groups.

Further, Fourier transform can be on cosets of a group.

Alternatives

There are various alternatives to the DFT for various applications, prominent among which are wavelets. The analog of the DFT is the discrete wavelet transform (DWT). From the point of view of time–frequency analysis, a key limitation of the Fourier transform is that it does not include location information, only frequency information, and thus has difficulty in representing transients. As wavelets have location as well as frequency, they are better able to represent location, at the expense of greater difficulty representing frequency. For details, see comparison of the discrete wavelet transform with the discrete Fourier transform.

See also

Notes

  1. Equivalently, it is the ratio of the sampling frequency and the number of samples.
  2. As a linear transformation on a finite-dimensional vector space, the DFT expression can also be written in terms of a DFT matrix; when scaled appropriately it becomes a unitary matrix and the Xk can thus be viewed as coefficients of x in an orthonormal basis.
  3. The non-zero components of a DTFT of a periodic sequence is a discrete set of frequencies identical to the DFT.
  4. Time reversal for the DFT means replacing by and not by to avoid negative indices.

Related Research Articles

<span class="mw-page-title-main">Fourier analysis</span> Branch of mathematics

In mathematics, Fourier analysis is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer.

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.

In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions is the product of their Fourier transforms. More generally, convolution in one domain equals point-wise multiplication in the other domain. Other versions of the convolution theorem are applicable to various Fourier-related transforms.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

In physics, the screened Poisson equation is a Poisson equation, which arises in the Klein–Gordon equation, electric field screening in plasmas, and nonlocal granular fluidity in granular flow.

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely.

In signal processing, a periodogram is an estimate of the spectral density of a signal. The term was coined by Arthur Schuster in 1898. Today, the periodogram is a component of more sophisticated methods. It is the most common tool for examining the amplitude vs frequency characteristics of FIR filters and window functions. FFT spectrum analyzers are also implemented as a time-sequence of periodograms.

In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.

In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see § Definition). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° (π/2 radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see § Relationship with the Fourier transform). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.

<span class="mw-page-title-main">Reciprocal lattice</span> Fourier transform of a real-space lattice, important in solid-state physics

The reciprocal lattice is a term associated with solids with translational symmetry, and plays a major role in many areas such as X-ray and electron diffraction as well as the energies of electrons in a solid. It emerges from the Fourier transform of the lattice associated with the arrangement of the atoms. The direct lattice or real lattice is a periodic function in physical space, such as a crystal system. The reciprocal lattice exists in the mathematical space of spatial frequencies, known as reciprocal space or k space, which is the dual of physical space considered as a vector space, and the reciprocal lattice is the sublattice of that space that is dual to the direct lattice.

In mathematics, Parseval's theorem usually refers to the result that the Fourier transform is unitary; loosely, that the sum of the square of a function is equal to the sum of the square of its transform. It originates from a 1799 theorem about series by Marc-Antoine Parseval, which was later applied to the Fourier series. It is also known as Rayleigh's energy theorem, or Rayleigh's identity, after John William Strutt, Lord Rayleigh.

In linear algebra, a circulant matrix is a square matrix in which all rows are composed of the same elements and each row is rotated one element to the right relative to the preceding row. It is a particular kind of Toeplitz matrix.

In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values.

<span class="mw-page-title-main">Hann function</span> Mathematical function used in signal processing

The Hann function is named after the Austrian meteorologist Julius von Hann. It is a window function used to perform Hann smoothing. The function, with length and amplitude is given by:

<span class="mw-page-title-main">Spectral concentration problem</span>

The spectral concentration problem in Fourier analysis refers to finding a time sequence of a given length whose discrete Fourier transform is maximally localized on a given frequency interval, as measured by the spectral concentration.

Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the Gaussian integral. Fourier integrals are also considered.

In digital signal processing, a discrete Fourier series (DFS) is a Fourier series whose sinusoidal components are functions of discrete time instead of continuous time. A specific example is the inverse discrete Fourier transform.

In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform. The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary operator, and algorithms for the hidden subgroup problem. The quantum Fourier transform was discovered by Don Coppersmith. With small modifications to the QFT, it can also be used for performing fast integer arithmetic operations such as addition and multiplication.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

In machine learning, the kernel embedding of distributions comprises a class of nonparametric methods in which a probability distribution is represented as an element of a reproducing kernel Hilbert space (RKHS). A generalization of the individual data-point feature mapping done in classical kernel methods, the embedding of distributions into infinite-dimensional feature spaces can preserve all of the statistical features of arbitrary distributions, while allowing one to compare and manipulate distributions using Hilbert space operations such as inner products, distances, projections, linear transformations, and spectral analysis. This learning framework is very general and can be applied to distributions over any space on which a sensible kernel function may be defined. For example, various kernels have been proposed for learning from data which are: vectors in , discrete classes/categories, strings, graphs/networks, images, time series, manifolds, dynamical systems, and other structured objects. The theory behind kernel embeddings of distributions has been primarily developed by Alex Smola, Le Song , Arthur Gretton, and Bernhard Schölkopf. A review of recent works on kernel embedding of distributions can be found in.

References

  1. Taboga, Marco (2021). "Discrete Fourier Transform - Frequencies", Lectures on matrix algebra. https://www.statlect.com/matrix-algebra/discrete-Fourier-transform-frequencies.
  2. Strang, Gilbert (May–June 1994). "Wavelets". American Scientist. 82 (3): 250–255. JSTOR   29775194. This is the most important numerical algorithm of our lifetime...
  3. Sahidullah, Md.; Saha, Goutam (Feb 2013). "A Novel Windowing Technique for Efficient Computation of MFCC for Speaker Recognition". IEEE Signal Processing Letters. 20 (2): 149–152. arXiv: 1206.2437 . Bibcode:2013ISPL...20..149S. doi:10.1109/LSP.2012.2235067. S2CID   10900793.
  4. J. Cooley, P. Lewis, and P. Welch (1969). "The finite Fourier transform". IEEE Transactions on Audio and Electroacoustics. 17 (2): 77–85. doi:10.1109/TAU.1969.1162036.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. "Shift zero-frequency component to center of spectrum – MATLAB fftshift". mathworks.com. Natick, MA 01760: The MathWorks, Inc. Retrieved 10 March 2014.{{cite web}}: CS1 maint: location (link)
  6. 1 2 Proakis, John G.; Manolakis, Dimitri G. (1996), Digital Signal Processing: Principles, Algorithms and Applications (3 ed.), Upper Saddle River, NJ: Prentice-Hall International, Bibcode:1996dspp.book.....P, ISBN   9780133942897, sAcfAQAAIAAJ
  7. Oppenheim, Alan V.; Schafer, Ronald W.; Buck, John R. (1999). Discrete-time signal processing (2nd ed.). Upper Saddle River, N.J.: Prentice Hall. p.  571. ISBN   0-13-754920-2.
  8. McGillem, Clare D.; Cooper, George R. (1984). Continuous and Discrete Signal and System Analysis (2 ed.). Holt, Rinehart and Winston. pp. 171–172. ISBN   0-03-061703-0.
  9. Amiot, Emmanuel (2016). Music through Fourier Space. Computational Music Science. Zürich: Springer. p. 8. doi:10.1007/978-3-319-45581-5. ISBN   978-3-319-45581-5. S2CID   6224021.
  10. Isabelle Baraquin; Nicolas Ratier (2023). "Uniqueness of the discrete Fourier transform". Signal Processing. 209: 109041. Bibcode:2023SigPr.20909041B. doi: 10.1016/j.sigpro.2023.109041 . ISSN   0165-1684.
  11. Morton, Patrick (1980). "On the eigenvectors of Schur's matrix". Journal of Number Theory. 12 (1): 122–127. doi:10.1016/0022-314X(80)90083-9. hdl: 2027.42/23371 .
  12. Bose, N. K. "Eigenvectors and eigenvalues of 1-D and nD DFT matrices." AEU-International Journal of Electronics and Communications 55.2 (2001): 131-133.
  13. 1 2 Candan, Ç. (2011). On the eigenstructure of DFT matrices [DSP education]. IEEE Signal Processing Magazine, 28(2), 105-108.
  14. 1 2 Pei, S. C., Ding, J. J., Hsue, W. L., & Chang, K. W. (2008). Generalized commuting matrices and their eigenvectors for DFTs, offset DFTs, and other periodic operations. IEEE Transactions on Signal Processing, 56(8), 3891-3904.
  15. Erseghe, T., & Cariolaro, G. (2003). An orthonormal class of exact and simple DFT eigenvectors with a high degree of symmetry. IEEE transactions on signal processing, 51(10), 2527-2539.
  16. Massar, S.; Spindel, P. (2008). "Uncertainty Relation for the Discrete Fourier Transform". Physical Review Letters. 100 (19): 190401. arXiv: 0710.0723 . Bibcode:2008PhRvL.100s0401M. doi:10.1103/PhysRevLett.100.190401. PMID   18518426. S2CID   10076374.
  17. 1 2 3 DeBrunner, Victor; Havlicek, Joseph P.; Przebinda, Tomasz; Özaydin, Murad (2005). "Entropy-Based Uncertainty Measures for , and With a Hirschman Optimal Transform for " (PDF). IEEE Transactions on Signal Processing. 53 (8): 2690. Bibcode:2005ITSP...53.2690D. doi:10.1109/TSP.2005.850329. S2CID   206796625 . Retrieved 2011-06-23.
  18. 1 2 Donoho, D.L.; Stark, P.B (1989). "Uncertainty principles and signal recovery". SIAM Journal on Applied Mathematics. 49 (3): 906–931. doi:10.1137/0149053. S2CID   115142886.
  19. Santhanam, Balu; Santhanam, Thalanayar S. "Discrete Gauss-Hermite functions and eigenvectors of the centered discrete Fourier transform", Proceedings of the 32nd IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2007, SPTM-P12.4), vol. III, pp. 1385-1388.
  20. Akansu, Ali N.; Agirman-Tosun, Handan "Generalized Discrete Fourier Transform With Nonlinear Phase", IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4547–4556, Sept. 2010.

Further reading