Z-transform

Last updated

In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex valued frequency-domain (the z-domain or z-plane) representation. [1] [2]

Contents

It can be considered a discrete-time equivalent of the Laplace transform (the s-domain or s-plane). [3] This similarity is explored in the theory of time-scale calculus.

While the continuous-time Fourier transform is evaluated on the s-domain's vertical axis (the imaginary axis), the discrete-time Fourier transform is evaluated along the z-domain's unit circle. The s-domain's left half-plane maps to the area inside the z-domain's unit circle, while the s-domain's right half-plane maps to the area outside of the z-domain's unit circle.

In signal processing, one of the means of designing digital filters is to take analog designs, subject them to a bilinear transform which maps them from the s-domain to the z-domain, and then produce the digital filter by inspection, manipulation, or numerical approximation. Such methods tend not to be accurate except in the vicinity of the complex unity, i.e. at low frequencies.

History

The foundational concept now recognized as the Z-transform, which is a cornerstone in the analysis and design of digital control systems, was not entirely novel when it emerged in the mid-20th century. Its embryonic principles can be traced back to the work of the French mathematician Pierre-Simon Laplace, who is better known for the Laplace transform, a closely related mathematical technique. However, the explicit formulation and application of what we now understand as the Z-transform were significantly advanced in 1947 by Witold Hurewicz and colleagues. Their work was motivated by the challenges presented by sampled-data control systems, which were becoming increasingly relevant in the context of radar technology during that period. The Z-transform provided a systematic and effective method for solving linear difference equations with constant coefficients, which are ubiquitous in the analysis of discrete-time signals and systems. [4] [5]

The method was further refined and gained its official nomenclature, "the Z-transform," in 1952, thanks to the efforts of John R. Ragazzini and Lotfi A. Zadeh, who were part of the sampled-data control group at Columbia University. Their work not only solidified the mathematical framework of the Z-transform but also expanded its application scope, particularly in the field of electrical engineering and control systems. [6] [7]

A notable extension, known as the modified or advanced Z-transform, was later introduced by Eliahu I. Jury. Jury's work extended the applicability and robustness of the Z-transform, especially in handling initial conditions and providing a more comprehensive framework for the analysis of digital control systems. This advanced formulation has played a pivotal role in the design and stability analysis of discrete-time control systems, contributing significantly to the field of digital signal processing. [8] [9]

Interestingly, the conceptual underpinnings of the Z-transform intersect with a broader mathematical concept known as the method of generating functions, a powerful tool in combinatorics and probability theory. This connection was hinted at as early as 1730 by Abraham de Moivre, a pioneering figure in the development of probability theory. De Moivre utilized generating functions to solve problems in probability, laying the groundwork for what would eventually evolve into the Z-transform. From a mathematical perspective, the Z-transform can be viewed as a specific instance of a Laurent series, where the sequence of numbers under investigation is interpreted as the coefficients in the (Laurent) expansion of an analytic function. This perspective not only highlights the deep mathematical roots of the Z-transform but also illustrates its versatility and broad applicability across different branches of mathematics and engineering. [10]

Definition

The Z-transform can be defined as either a one-sided or two-sided transform. (Just like we have the one-sided Laplace transform and the two-sided Laplace transform.) [11]

Bilateral Z-transform

The bilateral or two-sided Z-transform of a discrete-time signal is the formal power series defined as:

where is an integer and is, in general, a complex number. In polar form, may be written as:

where is the magnitude of , is the imaginary unit, and is the complex argument (also referred to as angle or phase) in radians.

Unilateral Z-transform

Alternatively, in cases where is defined only for , the single-sided or unilateral Z-transform is defined as:

In signal processing, this definition can be used to evaluate the Z-transform of the unit impulse response of a discrete-time causal system.

An important example of the unilateral Z-transform is the probability-generating function, where the component is the probability that a discrete random variable takes the value. The properties of Z-transforms (listed in § Properties) have useful interpretations in the context of probability theory.

Inverse Z-transform

The inverse Z-transform is:

where is a counterclockwise closed path encircling the origin and entirely in the region of convergence (ROC). In the case where the ROC is causal (see Example 2), this means the path must encircle all of the poles of .

A special case of this contour integral occurs when is the unit circle. This contour can be used when the ROC includes the unit circle, which is always guaranteed when is stable, that is, when all the poles are inside the unit circle. With this contour, the inverse Z-transform simplifies to the inverse discrete-time Fourier transform, or Fourier series, of the periodic values of the Z-transform around the unit circle:

The Z-transform with a finite range of and a finite number of uniformly spaced values can be computed efficiently via Bluestein's FFT algorithm. The discrete-time Fourier transform (DTFT)—not to be confused with the discrete Fourier transform (DFT)—is a special case of such a Z-transform obtained by restricting to lie on the unit circle.

Following three methods are often used for the evaluation of the inverse -transform,

Direct Evaluation by Contour Integration

This method involves applying the Cauchy Residue Theorem to evaluate the inverse Z-transform. By integrating around a closed contour in the complex plane, the residues at the poles of the Z-transform function inside the ROC are summed. This technique is particularly useful when working with functions expressed in terms of complex variables.

Expansion into a Series of Terms in the Variables z and z-1

In this method, the Z-transform is expanded into a power series. This approach is useful when the Z-transform function is rational, allowing for the approximation of the inverse by expanding into a series and determining the signal coefficients term by term.

Partial-Fraction Expansion and Table Lookup

This technique decomposes the Z-transform into a sum of simpler fractions, each corresponding to known Z-transform pairs. The inverse Z-transform is then determined by looking up each term in a standard table of Z-transform pairs. This method is widely used for its efficiency and simplicity, especially when the original function can be easily broken down into recognizable components.

Example: [12]

A) Determine the inverse Z-transform of the following by series expansion method,

Solution:

Case 1:

ROC:

Since the ROC is the exterior of a circle, is causal (signal existing for n≥0).

thus,

(arrow indicates term at x(0)=1)

Note that in each step of long division process we eliminate lowest power term of .

Case 2:

ROC:

Since the ROC is the interior of a circle, is anticausal (signal existing for n<0).

By performing long division we get,

(arrow indicates term at x(0)=0)

Note that in each step of long division process we eliminate lowest power term of .

Note:

  1. When the signal is causal, we get positive powers of and when the signal is anticausal, we get negative powers of .
  2. indicates term at and indicates term at .

B) Determine the inverse Z-transform of the following by series expansion method,

Eliminating negative powers if and dividing by ,

By Partial Fraction Expansion,

Case 1:

ROC:

Both the terms are causal, hence is causal.

Case 2:

ROC:

Both the terms are anticausal, hence is anticausal.

Case 3:

ROC:

One of the terms is causal (p=0.5 provides the causal part) and other is anticausal (p=1 provides the anticausal part), hence is both sided.

Region of convergence

The region of convergence (ROC) is the set of points in the complex plane for which the Z-transform summation converges (i.e. doesn't blow up in magnitude to infinity):

Example 1 (no ROC)

Let Expanding on the interval it becomes

Looking at the sum

Therefore, there are no values of that satisfy this condition.

Example 2 (causal ROC)

ROC (blue), |z| = .5 (dashed black circle), and the unit circle (dotted grey circle). Region of convergence 0.5 causal.svg
ROC (blue), |z| = .5 (dashed black circle), and the unit circle (dotted grey circle).

Let (where is the Heaviside step function). Expanding on the interval it becomes

Looking at the sum

The last equality arises from the infinite geometric series and the equality only holds if which can be rewritten in terms of as Thus, the ROC is In this case the ROC is the complex plane with a disc of radius 0.5 at the origin "punched out".

Example 3 (anti causal ROC)

ROC (blue), |z| = .5 (dashed black circle), and the unit circle (dotted grey circle). Region of convergence 0.5 anticausal.svg
ROC (blue), |z| = .5 (dashed black circle), and the unit circle (dotted grey circle).

Let (where is the Heaviside step function). Expanding on the interval it becomes

Looking at the sum

and using the infinite geometric series again, the equality only holds if which can be rewritten in terms of as Thus, the ROC is In this case the ROC is a disc centered at the origin and of radius 0.5.

What differentiates this example from the previous example is only the ROC. This is intentional to demonstrate that the transform result alone is insufficient.

Examples conclusion

Examples 2 & 3 clearly show that the Z-transform of is unique when and only when specifying the ROC. Creating the pole–zero plot for the causal and anticausal case show that the ROC for either case does not include the pole that is at 0.5. This extends to cases with multiple poles: the ROC will never contain poles.

In example 2, the causal system yields a ROC that includes while the anticausal system in example 3 yields an ROC that includes

ROC shown as a blue ring 0.5 < |z| < 0.75 Region of convergence 0.5 0.75 mixed-causal.svg
ROC shown as a blue ring 0.5 < |z| < 0.75

In systems with multiple poles it is possible to have a ROC that includes neither nor The ROC creates a circular band. For example,

has poles at 0.5 and 0.75. The ROC will be 0.5 < |z| < 0.75, which includes neither the origin nor infinity. Such a system is called a mixed-causality system as it contains a causal term and an anticausal term

The stability of a system can also be determined by knowing the ROC alone. If the ROC contains the unit circle (i.e., |z| = 1) then the system is stable. In the above systems the causal system (Example 2) is stable because |z| > 0.5 contains the unit circle.

Let us assume we are provided a Z-transform of a system without a ROC (i.e., an ambiguous ). We can determine a unique provided we desire the following:

For stability the ROC must contain the unit circle. If we need a causal system then the ROC must contain infinity and the system function will be a right-sided sequence. If we need an anticausal system then the ROC must contain the origin and the system function will be a left-sided sequence. If we need both stability and causality, all the poles of the system function must be inside the unit circle.

The unique can then be found.

Properties

Properties of the z-transform

Property

Time domain Z-domain Proof ROC
Definition of Z-transform (definition of the z-transform)

(definition of the inverse z-transform)

Linearity Contains ROC1 ∩ ROC2
Time expansion

with

Decimation ohio-state.edu or ee.ic.ac.uk
Time delay

with and

ROC, except if and if
Time advance

with

Bilateral Z-transform:

Unilateral Z-transform: [13]

First difference backward

with for

Contains the intersection of ROC of and
First difference forward
Time reversal
Scaling in the z-domain
Complex conjugation
Real part
Imaginary part
Differentiation in the z-domain ROC, if is rational;

ROC possibly excluding the boundary, if is irrational [14]

Convolution Contains ROC1 ∩ ROC2
Cross-correlation Contains the intersection of ROC of and
Accumulation
Multiplication -

Parseval's theorem

Initial value theorem : If is causal, then

Final value theorem : If the poles of are inside the unit circle, then

Table of common Z-transform pairs

Here:

is the unit (or Heaviside) step function and

is the discrete-time unit impulse function (cf Dirac delta function which is a continuous-time version). The two functions are chosen together so that the unit step function is the accumulation (running total) of the unit impulse function.

Signal, Z-transform, ROC
11all z
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 [14] , for positive integer [14]
18, for positive integer [14]
19
20
21
22

Relationship to Fourier series and Fourier transform

For values of in the region , known as the unit circle, we can express the transform as a function of a single real variable by defining And the bi-lateral transform reduces to a Fourier series:

  

(Eq.1)

which is also known as the discrete-time Fourier transform (DTFT) of the sequence. This -periodic function is the periodic summation of a Fourier transform, which makes it a widely used analysis tool. To understand this, let be the Fourier transform of any function, , whose samples at some interval equal the sequence. Then the DTFT of the sequence can be written as follows.

  

(Eq.2)

where has units of seconds, has units of hertz. Comparison of the two series reveals that is a normalized frequency with unit of radian per sample. The value corresponds to . And now, with the substitution Eq.1 can be expressed in terms of (a Fourier transform):

  

(Eq.3)

As parameter T changes, the individual terms of Eq.2 move farther apart or closer together along the f-axis. In Eq.3 however, the centers remain 2π apart, while their widths expand or contract. When sequence represents the impulse response of an LTI system, these functions are also known as its frequency response. When the sequence is periodic, its DTFT is divergent at one or more harmonic frequencies, and zero at all other frequencies. This is often represented by the use of amplitude-variant Dirac delta functions at the harmonic frequencies. Due to periodicity, there are only a finite number of unique amplitudes, which are readily computed by the much simpler discrete Fourier transform (DFT). (See Discrete-time Fourier transform § Periodic data .)

Relationship to Laplace transform

Bilinear transform

The bilinear transform can be used to convert continuous-time filters (represented in the Laplace domain) into discrete-time filters (represented in the Z-domain), and vice versa. The following substitution is used:

to convert some function in the Laplace domain to a function in the Z-domain (Tustin transformation), or

from the Z-domain to the Laplace domain. Through the bilinear transformation, the complex s-plane (of the Laplace transform) is mapped to the complex z-plane (of the z-transform). While this mapping is (necessarily) nonlinear, it is useful in that it maps the entire axis of the s-plane onto the unit circle in the z-plane. As such, the Fourier transform (which is the Laplace transform evaluated on the axis) becomes the discrete-time Fourier transform. This assumes that the Fourier transform exists; i.e., that the axis is in the region of convergence of the Laplace transform.

Starred transform

Given a one-sided Z-transform of a time-sampled function, the corresponding starred transform produces a Laplace transform and restores the dependence on (the sampling parameter):

The inverse Laplace transform is a mathematical abstraction known as an impulse-sampled function.

Linear constant-coefficient difference equation

The linear constant-coefficient difference (LCCD) equation is a representation for a linear system based on the autoregressive moving-average equation:

Both sides of the above equation can be divided by if it is not zero. By normalizing with the LCCD equation can be written

This form of the LCCD equation is favorable to make it more explicit that the "current" output is a function of past outputs current input and previous inputs

Transfer function

Taking the Z-transform of the above equation (using linearity and time-shifting laws) yields:

where and are the z-transform of and respectively. (Notation conventions typically use capitalized letters to refer to the z-transform of a signal denoted by a corresponding lower case letter, similar to the convention used for notating Laplace transforms.)

Rearranging results in the system's transfer function:

Zeros and poles

From the fundamental theorem of algebra the numerator has roots (corresponding to zeros of ) and the denominator has roots (corresponding to poles). Rewriting the transfer function in terms of zeros and poles

where is the zero and is the pole. The zeros and poles are commonly complex and when plotted on the complex plane (z-plane) it is called the pole–zero plot.

In addition, there may also exist zeros and poles at and If we take these poles and zeros as well as multiple-order zeros and poles into consideration, the number of zeros and poles are always equal.

By factoring the denominator, partial fraction decomposition can be used, which can then be transformed back to the time domain. Doing so would result in the impulse response and the linear constant coefficient difference equation of the system.

Output response

If such a system is driven by a signal then the output is By performing partial fraction decomposition on and then taking the inverse Z-transform the output can be found. In practice, it is often useful to fractionally decompose before multiplying that quantity by to generate a form of which has terms with easily computable inverse Z-transforms.

See also

Related Research Articles

The bilinear transform is used in digital signal processing and discrete-time control theory to transform continuous-time system representations to discrete-time and vice versa.

<span class="mw-page-title-main">Convolution</span> Integral expressing the amount of overlap of one function as it is shifted over another

In mathematics, convolution is a mathematical operation on two functions that produces a third function. The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result. Graphically, it expresses how the 'shape' of one function is modified by the other.

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

In mathematics, the Laplace transform, named after Pierre-Simon Laplace, is an integral transform that converts a function of a real variable to a function of a complex variable .

In engineering, a transfer function of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. It is widely used in electronic engineering tools like circuit simulators and control systems. In simple cases, this function can be represented as a two-dimensional graph of an independent scalar input versus the dependent scalar output. Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in electronics and control theory.

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.

Analog signal processing is a type of signal processing conducted on continuous analog signals by some analog means. "Analog" indicates something that is mathematically represented as a set of continuous values. This differs from "digital" which uses a series of discrete quantities to represent signal. Analog values are typically represented as a voltage, electric current, or electric charge around components in the electronic devices. An error or noise affecting such physical quantities will result in a corresponding error in the signals represented by such physical quantities.

<span class="mw-page-title-main">Short-time Fourier transform</span> Fourier-related transform suited to signals that change rather quickly in time

The short-time Fourier transform (STFT) is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In practice, the procedure for computing STFTs is to divide a longer time signal into shorter segments of equal length and then compute the Fourier transform separately on each shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually plots the changing spectra as a function of time, known as a spectrogram or waterfall plot, such as commonly used in software defined radio (SDR) based spectrum displays. Full bandwidth displays covering the whole range of an SDR commonly use fast Fourier transforms (FFTs) with 2^24 points on desktop computers.

In control theory and signal processing, a linear, time-invariant system is said to be minimum-phase if the system and its inverse are causal and stable.

Infinite impulse response (IIR) is a property applying to many linear time-invariant systems that are distinguished by having an impulse response that does not become exactly zero past a certain point but continues indefinitely. This is in contrast to a finite impulse response (FIR) system, in which the impulse response does become exactly zero at times for some finite , thus being of finite duration. Common examples of linear time-invariant systems are most electronic and digital filters. Systems with this property are known as IIR systems or IIR filters.

In signal processing, specifically control theory, bounded-input, bounded-output (BIBO) stability is a form of stability for signals and systems that take inputs. If a system is BIBO stable, then the output will be bounded for every input to the system that is bounded.

In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values.

<span class="mw-page-title-main">Linear time-invariant system</span> Mathematical model which is both linear and time-invariant

In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined in the overview below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (xh)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.

In mathematics, the Hankel transform expresses any given function f(r) as the weighted sum of an infinite number of Bessel functions of the first kind Jν(kr). The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor k along the r axis. The necessary coefficient Fν of each Bessel function in the sum, as a function of the scaling factor k constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval.

In mathematics, the two-sided Laplace transform or bilateral Laplace transform is an integral transform equivalent to probability's moment-generating function. Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f(t) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral

In mathematics, signal processing and control theory, a pole–zero plot is a graphical representation of a rational transfer function in the complex plane which helps to convey certain properties of the system such as:

<span class="mw-page-title-main">Gabor transform</span> Special case of the short-time Fourier transform

The Gabor transform, named after Dennis Gabor, is a special case of the short-time Fourier transform. It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. The window function means that the signal near the time being analyzed will have higher weight. The Gabor transform of a signal x(t) is defined by this formula:

First-order hold (FOH) is a mathematical model of the practical reconstruction of sampled signals that could be done by a conventional digital-to-analog converter (DAC) and an analog circuit called an integrator. For FOH, the signal is reconstructed as a piecewise linear approximation to the original signal that was sampled. A mathematical model such as FOH (or, more commonly, the zero-order hold) is necessary because, in the sampling and reconstruction theorem, a sequence of Dirac impulses, xs(t), representing the discrete samples, x(nT), is low-pass filtered to recover the original signal that was sampled, x(t). However, outputting a sequence of Dirac impulses is impractical. Devices can be implemented, using a conventional DAC and some linear analog circuitry, to reconstruct the piecewise linear output for either predictive or delayed FOH.

Impulse invariance is a technique for designing discrete-time infinite-impulse-response (IIR) filters from continuous-time filters in which the impulse response of the continuous-time system is sampled to produce the impulse response of the discrete-time system. The frequency response of the discrete-time system will be a sum of shifted copies of the frequency response of the continuous-time system; if the continuous-time system is approximately band-limited to a frequency less than the Nyquist frequency of the sampling, then the frequency response of the discrete-time system will be approximately equal to it for frequencies below the Nyquist frequency.

In mathematical analysis and applications, multidimensional transforms are used to analyze the frequency content of signals in a domain of two or more dimensions.

References

  1. Mandal, Jyotsna Kumar (2020). "Z-Transform-Based Reversible Encoding". Reversible Steganography and Authentication via Transform Encoding. Studies in Computational Intelligence. Vol. 901. Singapore: Springer Singapore. pp. 157–195. doi:10.1007/978-981-15-4397-5_7. ISBN   978-981-15-4396-8. ISSN   1860-949X. S2CID   226413693. Z is a complex variable. Z-transform converts the discrete spatial domain signal into complex frequency domain representation. Z-transform is derived from the Laplace transform.
  2. Lynn, Paul A. (1986). "The Laplace Transform and the z-transform". Electronic Signals and Systems. London: Macmillan Education UK. pp. 225–272. doi:10.1007/978-1-349-18461-3_6. ISBN   978-0-333-39164-8. Laplace Transform and the z-transform are closely related to the Fourier Transform. z-transform is especially suitable for dealing with discrete signals and systems. It offers a more compact and convenient notation than the discrete-time Fourier Transform.
  3. Palani, S. (2021-08-26). "The z-Transform Analysis of Discrete Time Signals and Systems". Signals and Systems. Cham: Springer International Publishing. pp. 921–1055. doi:10.1007/978-3-030-75742-7_9. ISBN   978-3-030-75741-0. S2CID   238692483. z-transform is the discrete counterpart of Laplace transform. z-transform converts difference equations of discrete time systems to algebraic equations which simplifies the discrete time system analysis. Laplace transform and z-transform are common except that Laplace transform deals with continuous time signals and systems.
  4. E. R. Kanasewich (1981). Time Sequence Analysis in Geophysics. University of Alberta. pp. 186, 249. ISBN   978-0-88864-074-1.
  5. E. R. Kanasewich (1981). Time sequence analysis in geophysics (3rd ed.). University of Alberta. pp. 185–186. ISBN   978-0-88864-074-1.
  6. Ragazzini, J. R.; Zadeh, L. A. (1952). "The analysis of sampled-data systems". Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry. 71 (5): 225–234. doi:10.1109/TAI.1952.6371274. S2CID   51674188.
  7. Cornelius T. Leondes (1996). Digital control systems implementation and computational techniques. Academic Press. p. 123. ISBN   978-0-12-012779-5.
  8. Eliahu Ibrahim Jury (1958). Sampled-Data Control Systems. John Wiley & Sons.
  9. Eliahu Ibrahim Jury (1973). Theory and Application of the Z-Transform Method. Krieger Pub Co. ISBN   0-88275-122-0.
  10. Eliahu Ibrahim Jury (1964). Theory and Application of the Z-Transform Method. John Wiley & Sons. p. 1.
  11. Jackson, Leland B. (1996). "The z Transform". Digital Filters and Signal Processing. Boston, MA: Springer US. pp. 29–54. doi:10.1007/978-1-4757-2458-5_3. ISBN   978-1-4419-5153-3. z transform is to discrete-time systems what the Laplace transform is to continuous-time systems. z is a complex variable. This is sometimes referred to as the two-sided z transform, with the one-sided z transform being the same except for a summation from n = 0 to infinity. The primary use of the one sided transform ... is for causal sequences, in which case the two transforms are the same anyway. We will not, therefore, make this distinction and will refer to ... as simply the z transform of x(n).
  12. Proakis, John; Manolakis, Dimitris. Digital Signal Processing Principles, Algorithms amd Applications (3rd ed.). PRENTICE-HALL INTERNATIONAL, INC.
  13. Bolzern, Paolo; Scattolini, Riccardo; Schiavoni, Nicola (2015). Fondamenti di Controlli Automatici (in Italian). MC Graw Hill Education. ISBN   978-88-386-6882-1.
  14. 1 2 3 A. R. Forouzan (2016). "Region of convergence of derivative of Z transform". Electronics Letters. 52 (8): 617–619. Bibcode:2016ElL....52..617F. doi:10.1049/el.2016.0189. S2CID   124802942.

Further reading