Zeta function regularization

Last updated

In mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to ill-conditioned sums appearing in number theory.

Contents

Definition

There are several different summation methods called zeta function regularization for defining the sum of a possibly divergent series a1 + a2 + ....

One method is to define its zeta regularized sum to be ζA(1) if this is defined, where the zeta function is defined for large Re(s) by

if this sum converges, and by analytic continuation elsewhere.

In the case when an = n, the zeta function is the ordinary Riemann zeta function. This method was used by Ramanujan to "sum" the series 1 + 2 + 3 + 4 + ... to ζ(1) = 1/12.

Hawking (1977) showed that in flat space, in which the eigenvalues of Laplacians are known, the zeta function corresponding to the partition function can be computed explicitly. Consider a scalar field φ contained in a large box of volume V in flat spacetime at the temperature T = β−1. The partition function is defined by a path integral over all fields φ on the Euclidean space obtained by putting τ = it which are zero on the walls of the box and which are periodic in τ with period β. In this situation from the partition function he computes energy, entropy and pressure of the radiation of the field φ. In case of flat spaces the eigenvalues appearing in the physical quantities are generally known, while in case of curved space they are not known: in this case asymptotic methods are needed.

Another method defines the possibly divergent infinite product a1a2.... to be exp(ζA(0)). Ray & Singer (1971) used this to define the determinant of a positive self-adjoint operator A (the Laplacian of a Riemannian manifold in their application) with eigenvalues a1, a2, ...., and in this case the zeta function is formally the trace of As. Minakshisundaram & Pleijel (1949) showed that if A is the Laplacian of a compact Riemannian manifold then the Minakshisundaram–Pleijel zeta function converges and has an analytic continuation as a meromorphic function to all complex numbers, and Seeley (1967) extended this to elliptic pseudo-differential operators A on compact Riemannian manifolds. So for such operators one can define the determinant using zeta function regularization. See "analytic torsion."

Hawking (1977) suggested using this idea to evaluate path integrals in curved spacetimes. He studied zeta function regularization in order to calculate the partition functions for thermal graviton and matter's quanta in curved background such as on the horizon of black holes and on de Sitter background using the relation by the inverse Mellin transformation to the trace of the kernel of heat equations.

Example

The first example in which zeta function regularization is available appears in the Casimir effect, which is in a flat space with the bulk contributions of the quantum field in three space dimensions. In this case we must calculate the value of Riemann zeta function at –3, which diverges explicitly. However, it can be analytically continued to s = –3 where hopefully there is no pole, thus giving a finite value to the expression. A detailed example of this regularization at work is given in the article on the detail example of the Casimir effect, where the resulting sum is very explicitly the Riemann zeta-function (and where the seemingly legerdemain analytic continuation removes an additive infinity, leaving a physically significant finite number).

An example of zeta-function regularization is the calculation of the vacuum expectation value of the energy of a particle field in quantum field theory. More generally, the zeta-function approach can be used to regularize the whole energy–momentum tensor both in flat and in curved spacetime.

The unregulated value of the energy is given by a summation over the zero-point energy of all of the excitation modes of the vacuum:

Here, is the zeroth component of the energy–momentum tensor and the sum (which may be an integral) is understood to extend over all (positive and negative) energy modes ; the absolute value reminding us that the energy is taken to be positive. This sum, as written, is usually infinite ( is typically linear in n). The sum may be regularized by writing it as

where s is some parameter, taken to be a complex number. For large, real s greater than 4 (for three-dimensional space), the sum is manifestly finite, and thus may often be evaluated theoretically.

The zeta-regularization is useful as it can often be used in a way such that the various symmetries of the physical system are preserved. Zeta-function regularization is used in conformal field theory, renormalization and in fixing the critical spacetime dimension of string theory.

Relation to other regularizations

Zeta function regularization is equivalent to dimensional regularization, see . However, the main advantage of the zeta regularization is that it can be used whenever the dimensional regularization fails, for example if there are matrices or tensors inside the calculations

Relation to Dirichlet series

Zeta-function regularization gives an analytic structure to any sums over an arithmetic function f(n). Such sums are known as Dirichlet series. The regularized form

converts divergences of the sum into simple poles on the complex s-plane. In numerical calculations, the zeta-function regularization is inappropriate, as it is extremely slow to converge. For numerical purposes, a more rapidly converging sum is the exponential regularization, given by

This is sometimes called the Z-transform of f, where z = exp(t). The analytic structure of the exponential and zeta-regularizations are related. By expanding the exponential sum as a Laurent series

one finds that the zeta-series has the structure

The structure of the exponential and zeta-regulators are related by means of the Mellin transform. The one may be converted to the other by making use of the integral representation of the Gamma function:

which leads to the identity

relating the exponential and zeta-regulators, and converting poles in the s-plane to divergent terms in the Laurent series.

Heat kernel regularization

The sum

is sometimes called a heat kernel or a heat-kernel regularized sum; this name stems from the idea that the can sometimes be understood as eigenvalues of the heat kernel. In mathematics, such a sum is known as a generalized Dirichlet series; its use for averaging is known as an Abelian mean. It is closely related to the Laplace–Stieltjes transform, in that

where is a step function, with steps of at . A number of theorems for the convergence of such a series exist. For example, by the Hardy-Littlewood Tauberian theorem, if

then the series for converges in the half-plane and is uniformly convergent on every compact subset of the half-plane . In almost all applications to physics, one has

History

Much of the early work establishing the convergence and equivalence of series regularized with the heat kernel and zeta function regularization methods was done by G. H. Hardy and J. E. Littlewood in 1916 and is based on the application of the Cahen–Mellin integral. The effort was made in order to obtain values for various ill-defined, conditionally convergent sums appearing in number theory.

In terms of application as the regulator in physical problems, before Hawking (1977), J. Stuart Dowker and Raymond Critchley in 1976 proposed a zeta-function regularization method for quantum physical problems. Emilio Elizalde and others have also proposed a method based on the zeta regularization for the integrals , here is a regulator and the divergent integral depends on the numbers in the limit see renormalization. Also unlike other regularizations such as dimensional regularization and analytic regularization, zeta regularization has no counterterms and gives only finite results.

See also

Related Research Articles

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics, a Dirichlet series is any series of the form

Slater-type orbitals (STOs) are functions used as atomic orbitals in the linear combination of atomic orbitals molecular orbital method. They are named after the physicist John C. Slater, who introduced them in 1930.

In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

In functional analysis, a branch of mathematics, it is sometimes possible to generalize the notion of the determinant of a square matrix of finite order (representing a linear transformation from a finite-dimensional vector space to itself) to the infinite-dimensional case of a linear operator S mapping a function space V to itself. The corresponding quantity det(S) is called the functional determinant of S.

In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function f of a complex argument z and an operator T, the aim is to construct an operator, f(T), which naturally extends the function f from complex argument to operator argument. More precisely, the functional calculus defines a continuous algebra homomorphism from the holomorphic functions on a neighbourhood of the spectrum of T to the bounded operators.

In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain D of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for 0 < p < ∞, the Bergman space Ap(D) is the space of all holomorphic functions in D for which the p-norm is finite:

In mathematics, Fredholm theory is a theory of integral equations. In the narrowest sense, Fredholm theory concerns itself with the solution of the Fredholm integral equation. In a broader sense, the abstract structure of Fredholm's theory is given in terms of the spectral theory of Fredholm operators and Fredholm kernels on Hilbert space. The theory is named in honour of Erik Ivar Fredholm.

The Minakshisundaram–Pleijel zeta function is a zeta function encoding the eigenvalues of the Laplacian of a compact Riemannian manifold. It was introduced by Subbaramiah Minakshisundaram and Åke Pleijel. The case of a compact region of the plane was treated earlier by Torsten Carleman.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series. Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

<span class="mw-page-title-main">1 + 2 + 3 + 4 + ⋯</span> Divergent series

The infinite series whose terms are the natural numbers 1 + 2 + 3 + 4 + ⋯ is a divergent series. The nth partial sum of the series is the triangular number

<span class="mw-page-title-main">1 + 1 + 1 + 1 + ⋯</span> Divergent series

In mathematics, 1 + 1 + 1 + 1 + ⋯, also written , , or simply , is a divergent series. Nevertheless, it is sometimes imputed to have a value of , especially in physics. This value can be justified by certain mathematical methods for obtaining values from divergent series, including zeta function regularization.

Clifford analysis, using Clifford algebras named after William Kingdon Clifford, is the study of Dirac operators, and Dirac type operators in analysis and geometry, together with their applications. Examples of Dirac type operators include, but are not limited to, the Hodge–Dirac operator, on a Riemannian manifold, the Dirac operator in euclidean space and its inverse on and their conformal equivalents on the sphere, the Laplacian in euclidean n-space and the Atiyah–Singer–Dirac operator on a spin manifold, Rarita–Schwinger/Stein–Weiss type operators, conformal Laplacians, spinorial Laplacians and Dirac operators on SpinC manifolds, systems of Dirac operators, the Paneitz operator, Dirac operators on hyperbolic space, the hyperbolic Laplacian and Weinstein equations.

In the mathematical study of several complex variables, the Szegő kernel is an integral kernel that gives rise to a reproducing kernel on a natural Hilbert space of holomorphic functions. It is named for its discoverer, the Hungarian mathematician Gábor Szegő.

The term resurgent function comes from French mathematician Jean Écalle's theory of resurgent functions and alien calculus. The theory evolved from the summability of divergent series and treats analytic functions with isolated singularities. He introduced the term in the late 1970s.

References