Ramanujan summation

Last updated

Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series. Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

Contents

Summation

Since there are no properties of an entire sum, the Ramanujan summation functions as a property of partial sums. If we take the Euler–Maclaurin summation formula together with the correction rule using Bernoulli numbers, we see that:[ clarification needed ][ further explanation needed ]

Ramanujan [1] wrote this again for different limits of the integral and the corresponding summation for the case in which p goes to infinity:

where C is a constant specific to the series and its analytic continuation and the limits on the integral were not specified by Ramanujan, but presumably they were as given above. Comparing both formulae and assuming that R tends to 0 as x tends to infinity, we see that, in a general case, for functions f(x) with no divergence at x = 0:

where Ramanujan assumed By taking we normally recover the usual summation for convergent series. For functions f(x) with no divergence at x = 1, we obtain:

alternatively, applying smoothed sums.

The convergent version of summation for functions with appropriate growth condition is then[ citation needed ]:

To compare, see Abel–Plana formula.

Ramanujan summation of divergent series

In the following text, indicates "Ramanujan summation". This formula originally appeared in one of Ramanujan's notebooks, without any notation to indicate that it exemplified a novel method of summation.

For example, the of 1 − 1 + 1 − ⋯ is:

Ramanujan had calculated "sums" of known divergent series. It is important to mention that the Ramanujan sums are not the sums of the series in the usual sense, [2] [3] i.e. the partial sums do not converge to this value, which is denoted by the symbol In particular, the sum of 1 + 2 + 3 + 4 + ⋯ was calculated as:

Extending to positive even powers, this gave:

and for odd powers the approach suggested a relation with the Bernoulli numbers:

It has been proposed to use of C(1) rather than C(0) as the result of Ramanujan's summation, since then it can be assured that one series admits one and only one Ramanujan's summation, defined as the value in 1 of the only solution of the difference equation that verifies the condition . [4]

This demonstration of Ramanujan's summation (denoted as ) does not coincide with the earlier defined Ramanujan's summation, C(0), nor with the summation of convergent series, but it has interesting properties, such as: If R(x) tends to a finite limit when x  1, then the series is convergent, and we have

In particular we have:

where γ is the Euler–Mascheroni constant.

Extension to integrals

Ramanujan resummation can be extended to integrals; for example, using the Euler–Maclaurin summation formula, one can write

which is the natural extension to integrals of the Zeta regularization algorithm.

This recurrence equation is finite, since for ,

Note that this involves (see zeta function regularization)

.

With , the application of this Ramanujan resummation lends to finite results in the renormalization of quantum field theories.

See also

Related Research Articles

In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence.

<span class="mw-page-title-main">Euler's constant</span> Constant value used in mathematics

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

In mathematics, a Dirichlet series is any series of the form

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.

In mathematical analysis, Cesàro summation assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series.

In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.

In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.

In mathematics, Borel summation is a summation method for divergent series, introduced by Émile Borel. It is particularly useful for summing divergent asymptotic series, and in some sense gives the best possible sum for such series. There are several variations of this method that are also called Borel summation, and a generalization of it called Mittag-Leffler summation.

In mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to ill-conditioned sums appearing in number theory.

The inverse tangent integral is a special function, defined by:

<span class="mw-page-title-main">1 + 2 + 3 + 4 + ⋯</span> Divergent series

The infinite series whose terms are the natural numbers 1 + 2 + 3 + 4 + ⋯ is a divergent series. The nth partial sum of the series is the triangular number

In mathematics, the multiple zeta functions are generalizations of the Riemann zeta function, defined by

In discrete calculus the indefinite sum operator, denoted by or , is the linear operator, inverse of the forward difference operator . It relates to the forward difference operator as the indefinite integral relates to the derivative. Thus

<span class="mw-page-title-main">Ramanujan's master theorem</span> Mathematical theorem

In mathematics, Ramanujan's Master Theorem, named after Srinivasa Ramanujan, is a technique that provides an analytic expression for the Mellin transform of an analytic function.

In mathematics, the Abel–Plana formula is a summation formula discovered independently by Niels Henrik Abel and Giovanni Antonio Amedeo Plana. It states that

In analytic number theory, a Dirichlet series, or Dirichlet generating function (DGF), of a sequence is a common way of understanding and summing arithmetic functions in a meaningful way. A little known, or at least often forgotten about, way of expressing formulas for arithmetic functions and their summatory functions is to perform an integral transform that inverts the operation of forming the DGF of a sequence. This inversion is analogous to performing an inverse Z-transform to the generating function of a sequence to express formulas for the series coefficients of a given ordinary generating function.

References

  1. Bruce C. Berndt, Ramanujan's Notebooks, Ramanujan's Theory of Divergent Series, Chapter 6, Springer-Verlag (ed.), (1939), pp. 133-149.
  2. "The Euler–Maclaurin formula, Bernoulli numbers, the zeta function, and real-variable analytic continuation" . Retrieved 20 January 2014.
  3. "Infinite series are weird" . Retrieved 20 January 2014.
  4. Éric Delabaere, Ramanujan's Summation, Algorithms Seminar 2001–2002, F. Chyzak (ed.), INRIA, (2003), pp. 83–88.