Borel, then an unknown young man, discovered that his summation method gave the 'right' answer for many classical divergent series. He decided to make a pilgrimage to Stockholm to see Mittag-Leffler, who was the recognized lord of complex analysis. Mittag-Leffler listened politely to what Borel had to say and then, placing his hand upon the complete works by Weierstrass, his teacher, he said in Latin, 'The Master forbids it'.
Contents
- Definition
- Borel's exponential summation method
- Borel's integral summation method
- Borel's integral summation method with analytic continuation
- Basic properties
- Regularity
- Nonequivalence of Borel and weak Borel summation
- Relationship to other summation methods
- Uniqueness theorems
- Watson's theorem
- Carleman's theorem
- Example
- Examples
- The geometric series
- An alternating factorial series
- An example in which equivalence fails
- Existence results and the domain of convergence
- Summability on chords
- The Borel polygon
- A Tauberian theorem
- Applications
- Generalizations
- See also
- Notes
- References
In mathematics, Borel summation is a summation method for divergent series, introduced by ÉmileBorel ( 1899 ). It is particularly useful for summing divergent asymptotic series, and in some sense gives the best possible sum for such series. There are several variations of this method that are also called Borel summation, and a generalization of it called Mittag-Leffler summation.
There are (at least) three slightly different methods called Borel summation. They differ in which series they can sum, but are consistent, meaning that if two of the methods sum the same series they give the same answer.
Throughout let A(z) denote a formal power series
and define the Borel transform of A to be its corresponding exponential series
Let An(z) denote the partial sum
A weak form of Borel's summation method defines the Borel sum of A to be
If this converges at z ∈ C to some function a(z), we say that the weak Borel sum of A converges at z, and write .
Suppose that the Borel transform converges for all positive real numbers to a function growing sufficiently slowly that the following integral is well defined (as an improper integral), the Borel sum of A is given by
representing Laplace transform of .
If the integral converges at z ∈ C to some a(z), we say that the Borel sum of A converges at z, and write .
This is similar to Borel's integral summation method, except that the Borel transform need not converge for all t, but converges to an analytic function of t near 0 that can be analytically continued along the positive real axis.
The methods (B) and (wB) are both regular summation methods, meaning that whenever A(z) converges (in the standard sense), then the Borel sum and weak Borel sum also converge, and do so to the same value. i.e.
Regularity of (B) is easily seen by a change in order of integration, which is valid due to absolute convergence: if A(z) is convergent at z, then
where the rightmost expression is exactly the Borel sum at z.
Regularity of (B) and (wB) imply that these methods provide analytic extensions to A(z).
Any series A(z) that is weak Borel summable at z ∈ C is also Borel summable at z. However, one can construct examples of series which are divergent under weak Borel summation, but which are Borel summable. The following theorem characterises the equivalence of the two methods.
There are always many different functions with any given asymptotic expansion. However, there is sometimes a best possible function, in the sense that the errors in the finite-dimensional approximations are as small as possible in some region. Watson's theorem and Carleman's theorem show that Borel summation produces such a best possible sum of the series.
Watson's theorem gives conditions for a function to be the Borel sum of its asymptotic series. Suppose that f is a function satisfying the following conditions:
is bounded by
for all z in the region (for some positive constant C).
Then Watson's theorem says that in this region f is given by the Borel sum of its asymptotic series. More precisely, the series for the Borel transform converges in a neighborhood of the origin, and can be analytically continued to the positive real axis, and the integral defining the Borel sum converges to f(z) for z in the region above.
Carleman's theorem shows that a function is uniquely determined by an asymptotic series in a sector provided the errors in the finite order approximations do not grow too fast. More precisely it states that if f is analytic in the interior of the sector |z| < C, Re(z) > 0 and |f(z)| < |bnz|n in this region for all n, then f is zero provided that the series 1/b0 + 1/b1 + ... diverges.
Carleman's theorem gives a summation method for any asymptotic series whose terms do not grow too fast, as the sum can be defined to be the unique function with this asymptotic series in a suitable sector if it exists. Borel summation is slightly weaker than special case of this when bn =cn for some constant c. More generally one can define summation methods slightly stronger than Borel's by taking the numbers bn to be slightly larger, for example bn = cnlog n or bn =cnlog n log log n. In practice this generalization is of little use, as there are almost no natural examples of series summable by this method that cannot also be summed by Borel's method.
The function f(z) = exp(–1/z) has the asymptotic series 0 + 0z + ... with an error bound of the form above in the region |arg(z)| < θ for any θ < π/2, but is not given by the Borel sum of its asymptotic series. This shows that the number π/2 in Watson's theorem cannot be replaced by any smaller number (unless the bound on the error is made smaller).
Consider the geometric series
which converges (in the standard sense) to 1/(1 − z) for |z| < 1. The Borel transform is
from which we obtain the Borel sum
which converges in the larger region Re(z) < 1, giving an analytic continuation of the original series.
Considering instead the weak Borel transform, the partial sums are given by AN(z) = (1 − zN+1)/(1 − z), and so the weak Borel sum is
where, again, convergence is on Re(z) < 1. Alternatively this can be seen by appealing to part 2 of the equivalence theorem, since for Re(z) < 1,
Consider the series
then A(z) does not converge for any nonzero z ∈ C. The Borel transform is
for |t| < 1, which can be analytically continued to all t ≥ 0. So the Borel sum is
(where Γ is the incomplete gamma function).
This integral converges for all z ≥ 0, so the original divergent series is Borel summable for all such z. This function has an asymptotic expansion as z tends to 0 that is given by the original divergent series. This is a typical example of the fact that Borel summation will sometimes "correctly" sum divergent asymptotic expansions.
Again, since
for all z, the equivalence theorem ensures that weak Borel summation has the same domain of convergence, z ≥ 0.
The following example extends on that given in ( Hardy 1992 , 8.5). Consider
After changing the order of summation, the Borel transform is given by
At z = 2 the Borel sum is given by
where S(x) is the Fresnel integral. Via the convergence theorem along chords, the Borel integral converges for all z ≤ 2 (the integral diverges for z > 2).
For the weak Borel sum we note that
holds only for z < 1, and so the weak Borel sum converges on this smaller domain.
If a formal series A(z) is Borel summable at z0 ∈ C, then it is also Borel summable at all points on the chord Oz0 connecting z0 to the origin. Moreover, there exists a function a(z) analytic throughout the disk with radius Oz0 such that
for all z = θz0, θ ∈ [0,1].
An immediate consequence is that the domain of convergence of the Borel sum is a star domain in C. More can be said about the domain of convergence of the Borel sum, than that it is a star domain, which is referred to as the Borel polygon, and is determined by the singularities of the series A(z).
Suppose that A(z) has strictly positive radius of convergence, so that it is analytic in a non-trivial region containing the origin, and let SA denote the set of singularities of A. This means that P ∈ SA if and only if A can be continued analytically along the open chord from 0 to P, but not to P itself. For P ∈ SA, let LP denote the line passing through P which is perpendicular to the chord OP. Define the sets
the set of points which lie on the same side of LP as the origin. The Borel polygon of A is the set
An alternative definition was used by Borel and Phragmén ( Sansone & Gerretsen 1960 , 8.3). Let denote the largest star domain on which there is an analytic extension of A, then is the largest subset of such that for all the interior of the circle with diameter OP is contained in . Referring to the set as a polygon is something of a misnomer, since the set need not be polygonal at all; if, however, A(z) has only finitely many singularities then will in fact be a polygon.
The following theorem, due to Borel and Phragmén provides convergence criteria for Borel summation.
Note that (B) summability for depends on the nature of the point.
Let ωi ∈ C denote the m-th roots of unity, i = 1, ..., m, and consider
which converges on B(0,1) ⊂ C. Seen as a function on C, A(z) has singularities at SA = {ωi : i = 1, ..., m}, and consequently the Borel polygon is given by the regular m-gon centred at the origin, and such that 1 ∈ C is a midpoint of an edge.
The formal series
converges for all (for instance, by the comparison test with the geometric series). It can however be shown [2] that A does not converge for any point z ∈ C such that z2n = 1 for some n. Since the set of such z is dense in the unit circle, there can be no analytic extension of A outside of B(0,1). Subsequently the largest star domain to which A can be analytically extended is S = B(0,1) from which (via the second definition) one obtains . In particular one sees that the Borel polygon is not polygonal.
A Tauberian theorem provides conditions under which convergence of one summation method implies convergence under another method. The principal Tauberian theorem [1] for Borel summation provides conditions under which the weak Borel method implies convergence of the series.
Borel summation finds application in perturbation expansions in quantum field theory. In particular in 2-dimensional Euclidean field theory the Schwinger functions can often be recovered from their perturbation series using Borel summation ( Glimm & Jaffe 1987 , p. 461). Some of the singularities of the Borel transform are related to instantons and renormalons in quantum field theory ( Weinberg 2005 , 20.7).
Borel summation requires that the coefficients do not grow too fast: more precisely, an has to be bounded by n!Cn+1 for some C. There is a variation of Borel summation that replaces factorials n! with (kn)! for some positive integer k, which allows the summation of some series with an bounded by (kn)!Cn+1 for some C. This generalization is given by Mittag-Leffler summation.
In the most general case, Borel summation is generalized by Nachbin resummation, which can be used when the bounding function is of some general type (psi-type), instead of being exponential type.
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance.
In mathematics, the Laplace transform, named after Pierre-Simon Laplace, is an integral transform that converts a function of a real variable to a function of a complex variable .
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial.
In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.
In mathematics, Stirling's approximation is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.
In mathematics, Abel's theorem for power series relates a limit of a power series to the sum of its coefficients. It is named after Norwegian mathematician Niels Henrik Abel, who proved it in 1826.
In information theory, the asymptotic equipartition property (AEP) is a general property of the output samples of a stochastic source. It is fundamental to the concept of typical set used in theories of data compression.
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:
In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior.
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by Dingle (1973) revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.
In mathematical analysis, Cesàro summation assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series.
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.
In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet, one of which is the improper integral of the sinc function over the positive real number line.
In mathematics, a Dirac comb is a periodic function with the formula for some given period . Here t is a real variable and the sum extends over all integers k. The Dirac delta function and the Dirac comb are tempered distributions. The graph of the function resembles a comb, hence its name and the use of the comb-like Cyrillic letter sha (Ш) to denote the function.
In mathematics, in the area of complex analysis, Nachbin's theorem is a result used to establish bounds on the growth rates for analytic functions. In particular, Nachbin's theorem may be used to give the domain of convergence of the generalized Borel transform, also called Nachbin summation.
In mathematics, Mittag-Leffler summation is any of several variations of the Borel summation method for summing possibly divergent formal power series, introduced by Mittag-Leffler
In mathematics, Wiener's lemma is a well-known identity which relates the asymptotic behaviour of the Fourier coefficients of a Borel measure on the circle to its discrete part. This result admits an analogous statement for measures on the real line. It was first discovered by Norbert Wiener.